Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93122
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊國鑫zh_TW
dc.contributor.advisorKuo-Hsin Yangen
dc.contributor.author吳昕明zh_TW
dc.contributor.authorHsin-Ming Wuen
dc.date.accessioned2024-07-17T16:31:55Z-
dc.date.available2024-07-18-
dc.date.copyright2024-07-17-
dc.date.issued2024-
dc.date.submitted2024-07-10-
dc.identifier.citationAASHTO. (2002). Standard specifications for highway bridges. Washington, D.C., with interims: American Association of State Highway and Transportation Officials.
Abbas, Q., & Yoo, C. (2018). Laboratory investigation of internal drainage on the deformation behavior of geosynthetics reinforced soil wall (GRSW) during rainfall. Proceedings of the 11th International Conference on Geosynthetics. Seoul,
ASTM-D422. (2007). Standard D422: Standard Test Method for Particle-Size Analysis of Soils. ASTM Standards, ASTM International, West Coshohocken, Pnnsylvania, USA.
ASTM-D854. (2010). Standard D2435: Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International, West Conshohocken, Pa. doi. ASTM Standards, ASTM International, West Coshohocken, Pnnsylvania, USA.
ASTM-D2434. ASTM-D2434: Standard Test Methods for Measurement of Hydraulic Conductivity of Coarse-Grained Soils. ASTM Standards, ASTM International, West Coshohocken, Pnnsylvania, USA.
ASTM-D3080. Standard D3080:Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. ASTM Standards, ASTM International, West Coshohocken, Pnnsylvania, USA.
ASTM-D3080M. Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. ASTM Standards, ASTM International, West Coshohocken, Pnnsylvania, USA.
ASTM-D4253. Standard D4253 : Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table. ASTM Standards, ASTM International, West Coshohocken, Pnnsylvania, USA.
ASTM-D4254. Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density. ASTM Standards, ASTM International, West Coshohocken, Pnnsylvania, USA.
ASTM-D4318. (2005). Standard D4318: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM Standards, ASTM International, West Coshohocken, Pnnsylvania, USA.
ASTM-D5084. Standard D5084 : Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter. ASTM Standards, ASTM International, West Coshohocken, Pnnsylvania, USA.
ASTM-D5321. Standard Test Method for Determining the Coefficient of Soil and Geosynthetic or Geosynthetic and Geosynthetic Friction by the Direct Shear Method. ASTM Standards, ASTM International, West Coshohocken, Pnnsylvania, USA.
ASTM-D6836. (2008). Standard D6836: Standard test methods for determination of the soil water characteristic curve for desorption using hanging column, pressure extractor, chilled mirror hygrometer, or centrifuge. ASTM Standards, ASTM International, West Coshohocken, Pnnsylvania, USA.
Balakrishnan, S., & Viswanadham, B. (2019). Centrifuge model studies on the performance of soil walls reinforced with sand-cushioned geogrid layers. Geotextiles and Geomembranes, 47(6), 803-814.
Bathurst, R. J., Miyata, Y., Otani, Y., Ohta, H., & Miyatake, H. (2016). Stability of steel reinforced soil walls after footing failure. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 169(1), 25-34.
Bhattacherjee, D., & Viswanadham, B. (2015). Numerical studies on the performance of hybrid-geosynthetic-reinforced soil slopes subjected to rainfall. Geosynthetics International, 22(6), 411-427.
Blaber, J., Adair, B., & Antoniou, A. (2015). Ncorr: Open-source 2D digital image correlation matlab software. Experimental Mechanics, 55(6), 1105-1122.
Buckingham, E. (1914). On physically similar systems: Illustrations of the use of dimensional equations. Physical review, 4(4), 345.
Cai, M. (2011). 三軸壓縮試驗下加勁土壤力學行為與加勁材應變發展之研究 National Taiwan University of Science and Technology. Taipei.
Chen, H.-T., Hung, W.-Y., Chang, C.-C., Chen, Y.-J., & Lee, C.-J. (2007). Centrifuge modeling test of a geotextile-reinforced wall with a very wet clayey backfill. Geotextiles and Geomembranes, 25(6), 346-359.
Chen, S.-H. (2015). Hydraulic structures. Springer.
Christopher, B. R., & Stulgis, R. P. (2005). Low permeable backfill soils in geosynthetic reinforced soil walls: state-of-the-practice in North America. Proceedings of North American geo-synthetics conference (NAGS 2005),
Circulado, U. R. L., & Lorenzo, G. A. (2020). Large-Scale Prototype Testing of a Composite Geosynthetics Reinforced Earth Structure for Riverbank Slope Protection Using Fines Grained Sandy Soil. Mindanao Journal of Science and Technology, 18(1).
Di Pietro, P. (2017). Practical Applications with Geosynthetic Mats Reinforced with Steel Wire Meshes to Prevent Embankment Damage by Burrowing Large Rodents and Beavers. J. Civ. Eng. Arch, 11, 8-15.
Duncan, J. M., Wright, S. G., & Brandon, T. L. (2014). Soil strength and slope stability. John Wiley & Sons.
Durukan, Z., & Tezcan, S. S. (1992). Cost analysis of reinforced soil walls. Geotextiles and Geomembranes, 11(1), 29-43.
Eigenbrod, K., & Locker, J. (1987). Determination of friction values for the design of side slopes lined or protected with geosynthetics. Canadian Geotechnical Journal, 24(4), 509-519.
Elias, V., Christopher, B. R., & Berg, R. (2001). Mechanically stabilized earth walls and reinforced. National Highway Institute, Federal Highway Administration.
Engineers, U. A. C. o. (1970). Engineering and design: Stability of earth and rock-fill dams. In: Dept. of the Army, Corps of Engineers Washington, DC.
Esmaili, D., Hatami, K., & Miller, G. A. (2014). Influence of matric suction on geotextile reinforcement-marginal soil interface strength. Geotextiles and Geomembranes, 42(2), 139-153.
Faure, Y.-H., Ho, C. C., Chen, R.-H., Le Lay, M., & Blaza, J. (2010). A wave flume experiment for studying erosion mechanism of revetments using geotextiles. Geotextiles and Geomembranes, 28(4), 360-373.
Geo-Slope. (2012a). Seep/W for Finite Element Seepage Analysis: User’s Guide. Geo-Slope International Ltd.
Geo-Slope. (2012b). Slope/W for Slope Stability Analysis: User’s Guide. Geo-Slope International Ltd.
Hsieh, P.-C., & Lin, Z. (2010). 烏溪流域三角形單位歷線 m 值之研究. Journal of Soil and Water Conservation, 42(1), 99-122.
Jayanandan, M., & Viswanadham, B. (2020). Geogrid reinforced soil walls with marginal backfills subjected to rainfall: numerical study. Indian Geotechnical Journal, 50, 238-251.
Jayanandan, M., & Viswanadham, B. V. S. (2019). Geogrid reinforced soil walls with marginal backfills subjected to rainfall: numerical study. Indian Geotechnical Journal, 50(2), 238-251.
Koerner, R. M., & Koerner, G. R. (2011). The importance of drainage control for geosynthetic reinforced mechanically stabilized earth walls. Journal of GeoEngineering, 6(1), 3-13.
Koerner, R. M., & Koerner, G. R. (2013). A data base statistics and recommendations regarding 171 failed geosynthetic reinforced mechanically stabilized earth (MSE) walls. Geotextiles and Geomembranes, 40, 20-27.
Koerner, R. M., & Koerner, G. R. (2018). An extended data base and recommendations regarding 320 failed geosynthetic reinforced mechanically stabilized earth (MSE) walls. Geotextiles and Geomembranes, 46(6), 904-912.
Koutsourais, M., Sandri, D., & Swan, R. (1998). Soil interaction characteristics of geotextiles and geogrids. Proc. 6th Int. Conf. Geosynthetics, Atlanta, Georgia,
Kumar, S., & Roy, L. B. (2023). Experimental and Numerical Analysis of Unsaturated Soil Slope Stability with Rainfall and Jute Fibre Reinforcement Condition. Geotechnical Engineering (00465828), 54(1).
Lai, C.-W. (2018). 加勁基礎受正斷層作用之物理模型試驗研究 National Taiwan University of Science and Technology. Taipei.
Langhaar, H. L. (1980). Dimensional analysis and theory of models. Robert E. Krieger publishing company.
Liu, C.-N., Yang, K.-H., Ho, Y.-H., & Chang, C.-M. (2012). Lessons learned from three failures on a high steep geogrid-reinforced slope. Geotextiles and Geomembranes, 34, 131-143.
Liu, C.-N., Zornberg, J. G., Chen, T.-C., Ho, Y.-H., & Lin, B.-H. (2009). Behavior of geogrid-sand interface in direct shear mode. Journal of Geotechnical and Geoenvironmental Engineering, 135(12), 1863-1871.
Liu, C.-N., Yang, K.-H., & Nguyen, M. D. (2014). Behavior of geogrid–reinforced sand and effect of reinforcement anchorage in large-scale plane strain compression. Geotextiles and Geomembranes, 42(5), 479-493.
Lu, H.-C. (2019). Evaluation of Improved Methods for Geosynthetic-Reinforced Soil Walls with Marginal Backfills subjected to Rainfall National Taiwan University]. Taipei.
Miszkowska, A., Lenart, S., & Koda, E. (2017). Changes of permeability of nonwoven geotextiles due to clogging and cyclic water flow in laboratory conditions. Water, 9(9), 660.
Miyata, Y., Bathurst, R. J., Konami, T., & Dobashi, K. (2010). Influence of transient flooding on multi-anchor walls. Soils and Foundations, 50(3), 371-382.
Miyata, Y., Bathurst, R. J., Otani, Y., Ohta, H., & Miyatake, H. (2015). Influence of transient flooding on steel strip reinforced soil walls. Soils and Foundations, 55(4), 881-894.
Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water resources research, 12(3), 513-522.
Palmeira, E. M., & Tatto, J. (2015). Behaviour of geotextile filters in armoured slopes subjected to the action of waves. Geotextiles and Geomembranes, 43(1), 46-55.
Portelinha, F., & Zornberg, J. (2017). Effect of infiltration on the performance of an unsaturated geotextile-reinforced soil wall. Geotextiles and Geomembranes, 45(3), 211-226.
Portelinha, F. H. M., Bueno, B. d. S., & Zornberg, J. G. (2013). Performance of nonwoven geotextile-reinforced walls under wetting conditions: laboratory and field investigations. Geosynthetics International, 20(2), 90-104.
Portelinha, F. H. M., Bueno, B. S., & Zornberg, J. G. (2013). Performance of nonwoven geotextile-reinforced walls under wetting conditions: laboratory and field investigations. Geosynthetics International, 20(2), 90-104.
Portelinha, F. H. M., & Zornberg, J. G. (2017). Effect of infiltration on the performance of an unsaturated geotextile-reinforced soil wall. Geotextiles and Geomembranes, 45(3), 211-226.
Rajabian, A., Viswanadham, B., Ghiassian, H., & Salehzadeh, H. (2012). Centrifuge model studies on anchored geosynthetic slopes for coastal shore protection. Geotextiles and Geomembranes, 34, 144-157.
Rajagopal, G., & Thiyyakkandi, S. (2021). Numerical evaluation of the performance of back-to-back MSE walls with hybrid select-marginal fill zones. Transportation Geotechnics, 26, 100445.
Sandri, D. (2005). Drainage recommendations for MSE walls constructed with marginal fills. Proc., NAGS/GRI-19 Cooperative Conf.(CD-ROM), Industrial Fabrics Association International, Roseville, MN.
Shi, C., Si, X., Zhang, Y., Yang, J., & Dong, J. (2022). A simplified model for stability analysis of reservoir bank slopes under water level dropping condition. Granular Matter, 24(3), 90.
Simac, M., Bathurst, R., Berg, R., & Lothspeich, S. (1993). Design manual for segmental retaining walls.
TCCIP. (2019). Taiwan Climate Change Projection and Information Platform webpage. https://tccip.ncdr.nat.gov.tw/ds_02.aspx
Terzaghi, K., & Peck, R. B. (1948). Soil mechanics in engineering practice. J. Wiley.
Thuo, J. N., Yang, K. H., & Huang, C. C. (2015). Infiltration into unsaturated reinforced slopes with nonwoven geotextile drains sandwiched in sand layers. Geosynthetics International, 22(6), 457-474.
Van Genuchten, M. T. (1980). A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America journal, 44(5), 892-898.
Vibha, S., & Divya, P. (2021). Performance of geosynthetic reinforced MSE walls with marginal backfills at the onset of rainfall infiltration. International Journal of Geosynthetics and Ground Engineering, 7(1), 1-16.
Viswanadham, B. V. S., & König, D. (2004). Studies on scaling and instrumentation of a geogrid. Geotextiles and Geomembranes, 22(5), 307-328.
Wu, J., Ma, C., Pham, T., & Adams, M. (2011). Required minimum reinforcement stiffness and strength in geosynthetic-reinforced soil (GRS) walls and abutments. International Journal of Geotechnical Engineering, 5(4), 395-404.
Wu, J. T., & Pham, T. Q. (2013). Load-carrying capacity and required reinforcement strength of closely spaced soil-geosynthetic composites. Journal of Geotechnical and Geoenvironmental Engineering, 139(9), 1468-1476.
Wu, J. Y., & Chou, N. N. (2013). Forensic Studies of Geosynthetic Reinforced Structure Failures. Journal of Performance of Constructed Facilities, 27(5), 604-613.
Xin-xi, L., Yuan-you, X., Cao, L., & Kai-peng, Z. (2005). Research on method of landslide stability valuation during sudden drawdown of reservoir level. Rock and Soil Mechanics, 26(9), 1427-+.
Yang, K.-H., Huynh, V. D. A., Nguyen, T. S., & Portelinha, F. H. M. (2018). Numerical evaluation of reinforced slopes with various backfill-reinforcement-drainage systems subject to rainfall infiltration. Computers and Geotechnics, 96, 25-39.
Yang, K.-H., Thuo, J.-N., Chen, J.-W., & Liu, C.-N. (2019). Failure investigation of a geosynthetic-reinforced soil slope subjected to rainfall. Geosynthetics International, 26(1), 42-65.
Yang, K., Nguyen, T., Li, Y., & Leshchinsky, B. (2019). Performance and design of reinforced slopes considering regional hydrological conditions. Geosynthetics International, 26(5), 451-473.
Yasuhara, K., & Recio-Molina, J. (2007). Geosynthetic-wrap around revetments for shore protection. Geotextiles and Geomembranes, 25(4-5), 221-232.
Yoo, C., & Jang, D. W. (2013). Geosynthetic reinforced soil wall performance under heavy rainfall. Proceedings of the 18th international conference on soil mechanics and geotechnical engineering: challenges and innovations in geotechnics, Paris, 1, 2131-2134.
Yoo, C., & Jung, H.-Y. (2006). Case history of geosynthetic reinforced segmental retaining wall failure. Journal of Geotechnical and Geoenvironmental Engineering, 132(12), 1538-1548.
Yoo, C., & Jung, H. (2006). Case history of geosynthetic reinforced segmental retaining wall failure. Journal of Geotechnical and Geoenvironmental Engineering, 132(12), 1538-1548.
Zapata, C. E., Houston, W. N., Houston, S. L., & Walsh, K. D. (2000). Soil–water characteristic curve variability. In Advances in unsaturated geotechnics (pp. 84-124).
Zornberg, J. G., & Arriaga, F. (2003). Strain distribution within geosynthetic-reinforced slopes. Journal of Geotechnical and Geoenvironmental Engineering, 129(1), 32-45.
Zornberg, J. G., Sitar, N., & Mitchell, J. K. (1998). Performance of geosynthetic reinforced slopes at failure. Journal of Geotechnical and Geoenvironmental Engineering, 124(8), 670-683.
內政部. (2020). 水土保持技術規範. https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=M0110001&kw=%E6%B0%B4%E5%9C%9F%E4%BF%9D%E6%8C%81%E6%B3%95
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93122-
dc.description.abstract加勁擋土牆,作為一種柔性擋土結構,已在全球範圍內得到廣泛應用,其環境友好性、經濟效益及視覺美觀等特性受到高度評價。然而,在考慮到成本效益及工程的土方挖填平衡時,工程實踐中常採用當地富含細粒料的土壤作為回填材料。這些材料通常具有較低的滲透性,尤其在颱風或豪雨期間或是洪水條件下,易因水分入滲導致土壤基質的吸力降低、孔隙水壓增加及剪力強度下降,進而可能引起擋土牆的過度變形甚至破壞。雖然此類結構具備多種優勢,但在使用含高量細粒的邊際回填土或設計不當時,其穩定性可能受到威脅。本研究針對極端氣候變化背景下的降雨和洪水事件,探討了加勁擋土結構的性能及其改進措施的效應。
研究方法包括物理模型實驗與數值模擬的結合,旨在評估面對不同氣候條件時加勁擋土結構的穩定性。實驗部分通過分析加勁材料的勁度、垂直間距及加入薄砂層厚度等變量對結構穩定性的影響,採用一個縮尺比例為5的模型,模擬3米高的原型加勁擋土牆在洪水或降雨情境下的表現,特別是當水位達到牆高的三分之二,或降雨強度達每小時75毫米。主要監控的參數包括潛水面水位、牆面變形和加勁材料的拉伸應變。在數值模擬方面進一步探討了細粒料含量對結構穩定性的影響,以及可能引發的急洩降風險。
研究發現,透過調整加勁材料間的間距或增加薄砂層的厚度,可以有效控制擋土牆的變形並改變其破壞模式。具體來說,薄砂層的加入不僅增強了拉拔阻力和結構強度,還改善了排水性能。在洪水條件下,提高加勁材料的勁度及減小垂直間距均顯著降低了牆面的變形。傳統上,基於土壤的力學破壞模式建議使用細粒料含量15%以上的回填土。然而,研究中發現,當細粒料含量6%時達到最低安全係數,這一發現表明,在水力條件下,破壞模式與傳統力學考量並不完全相同。此外,本研究還確定了牆面內部水位、安全係數與急洩降風險之間的相關性。
基於以上研究結果,本論文提出在降雨及洪水條件下加勁擋土牆設計之建議,並強調了為緩解氣候變化影響所需採取的措施。
zh_TW
dc.description.abstractThis thesis explores the resilience and performance of geosynthetic-reinforced soil (GRS) structures under extreme weather conditions, such as heavy rainfall and floods, which are intensifying due to climate change. Renowned for their versatility, cost-effectiveness, and rapid construction, GRS structures are pivotal in civil infrastructure. However, failures often occur due to using marginal backfill soils with high fines content and suboptimal design practices. This study aims to fill a gap by assessing how severe weather affects GRS walls.
A series of model tests and numerical simulations were conducted to examine the impact of rainfall and flooding on GRS wall stability. The experiments evaluated the effectiveness of different reinforcement stiffness, vertical spacing, and the presence of sand cushions in enhancing wall stability. A reduced scaled model (N = 5) was used to represent 3-meter prototype GRS walls exposed to flood conditions up to two-thirds of the wall height or rainfall intensities of 75mm/hr. Key metrics such as phreatic surface levels, wall deformations, and reinforcement tensile strains were monitored and analyzed.
The result indicates that in rainfall simulations, reducing the spacing between reinforcements or incorporating sand cushions controlled wall deformations effectively and modified failure modes. Notably, the sand layer improved pullout resistance, strength, and drainage properties. During flood conditions, both increasing reinforcement stiffness and reducing vertical spacing were effective, with the latter proving more significant in mitigating wall deformations. Based on soil mechanics, regulations recommend using backfill with fines content more than 15%. However, numerical simulations showed that the relationship between fines content and safety factor is nonlinear, and the most critical safety factor occurs at a fines content of 6%. Demonstrating that the failure mechanism differs from the traditional mechanical mode under hydraulic conditions. Based on these findings, the thesis discusses design strategies for using GRS walls as effective waterfront protection structures, highlighting adaptations to counteract the challenges posed by climate change.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-17T16:31:55Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-17T16:31:55Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgement i
摘要 iii
Abstract v
Table of Contents vii
List of Tables xii
List of Figures xiii
Chapter 1 Introduction 1
1.1 Research background and motivation 1
1.2 Research objectives 4
1.3 Research layout 6
Chapter 2 Literature Review 9
2.1 Design method of the GRS wall 9
2.1.1 Breakage failure 11
2.1.2 Pullout failure 12
2.1.3 Backfill specifications 15
2.2 Effects of backfill fines content on GRS walls 17
2.3 GRS walls subjected to rainfall 23
2.3.1 In-situ failure cases 25
2.3.2 Physical model test 34
2.3.3 Numerical Simulation 42
2.4 GRS Walls subjected to flooding 46
2.5 Analysis of rapid drawdown conditions 49
2.6 Improvement measures 50
2.6.1 Sand cushion 50
2.6.2 Increase reinforcement stiffness and reduced vertical reinforcement spacing 52
Chapter 3 Reduced Model Tests 54
3.1 Material properties 54
3.1.1 Soil properties 54
3.1.2 Permeability test 57
3.1.3 Soil Water Characteristic Curve 58
3.1.4 Wide-width tensile test 59
3.1.5 Soil-reinforcement interface direct shear test 62
3.2 Instrumentation 65
3.2.1 Pore water pressure transducer 65
3.2.2 Volumetric water content gauge 70
3.2.3 Photography equipment 73
3.3 Model design 75
3.3.1 Model configuration 75
3.3.2 Rainfall system 80
3.3.3 Improvement measure design 83
3.3.4 Fluorescence test 84
3.4 Model preparation and test procedure 87
3.4.1 Test procedure 87
3.4.2 Pilot experiment and repeatability test 102
3.5 Similitude law 108
3.5.1 Model similarity 108
3.5.2 Dimensional analysis 113
3.6 Test program 121
Chapter 4 Test Results of GRS Structures under Rainfall 124
4.1 Baseline case 127
4.1.1 Test procedure 127
4.1.2 Variation of PWP and VWC 130
4.1.3 Variation of wall deformation 132
4.1.4 Variation of reinforcement tensile strain and force development 135
4.1.5 Summary 137
4.2 Influence of reinforcement spacing 139
4.2.1 SM 20 139
4.2.2 SM 12 151
4.2.3 SM 10 161
4.3 Influence of sand cushion 166
4.3.1 SM 15 + SC 2 166
4.3.2 SM 15 + SC 4 180
4.3.3 SM 15 + SC 6 191
4.4 Overall comparison 194
4.4.1 Variation of shear stress distribution 196
4.4.2 Variation of volumetric water content 202
4.4.3 Variation of pore water pressure accumulation 203
4.4.4 Drainage effect of the sand cushion 205
4.4.5 Variation of wall deformation 209
4.4.6 Variation of reinforcement tensile strain 212
4.4.7 Variation of system stiffness 214
4.5 Design suggestions subjected to rainfall 215
Chapter 5 Test Results of GRS Structures under Flooding 219
5.1 Design of flood level 223
5.2 Baseline case 228
5.2.1 Variation of PWP and VWC 228
5.2.2 Development of wall deformations and failure plane 232
5.2.3 Variation of wall deformation and settlement 235
5.2.4 Variation of reinforcement tensile strain and force development 238
5.2.5 Summary 241
5.3 Influence of reinforcement spacing 243
5.3.1 SM 7.5 243
5.3.2 SM 5 257
5.4 Influence of reinforcement stiffness 267
5.4.1 SM 15-2J 267
5.4.2 SM 15-3J 280
5.5 Overall comparison 293
5.5.1 Failure process 294
5.5.2 Variation of phreatic surface level 297
5.5.3 Variation of failure surface 300
5.5.4 Variation of wall deformation and settlement 305
5.5.5 Variation of reinforcement tensile strain 307
5.5.6 Comparison of the design method 310
Chapter 6 Numerical analyses 314
6.1 Design of numerical model 316
6.2 Boundary conditions 320
6.3 Model validation 323
6.4 Experimental Program 329
6.5 Baseline case 338
6.5.1 Variation of PWP 338
6.5.2 Safety factor map 341
6.6 Influence of fines content 343
6.6.1 FC-6 343
6.6.2 FC-19 346
6.6.3 FC-30 349
6.6.4 FC-55 352
6.6.5 Fines content influence on saturation time and rapid drawdown potential 355
6.6.6 Trends in safety factors and critical values 358
6.6.7 Temporal variations in internal water pressure distribution 361
6.7 Influence of drawdown rate 364
6.7.1 Impact of water level drawdown rate and fines content on safety factors 364
6.7.2 Relationship between rapid drawdown factor and water table 367
6.7.3 Relationship between the factor of safety increment and rapid drawdown factor 370
Chapter 7 Conclusions 372
Recommendations 378
References 381
-
dc.language.isoen-
dc.subject邊際回填土zh_TW
dc.subject加勁擋土牆zh_TW
dc.subject數值模擬zh_TW
dc.subject模型實驗zh_TW
dc.subject破壞機制zh_TW
dc.subjectFailure mechanismen
dc.subjectModel testen
dc.subjectNumerical simulationen
dc.subjectMarginal backfillen
dc.subjectGRS Wallsen
dc.title降雨及洪水條件下加勁擋土牆之表現評估zh_TW
dc.titleEvaluation of the Performance of Geosynthetic-Reinforced Soil Structures Subjected to Rainfall and Floodingen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee王泰典;邱俊翔;何嘉浚;邱雅筑;劉至軒zh_TW
dc.contributor.oralexamcommitteeTai-Tien Wang;Jiunn-Shyang Chiou;Chia-Chun Ho;Ya-Chu Chiu;Chih-Hsuan Liuen
dc.subject.keyword加勁擋土牆,邊際回填土,破壞機制,模型實驗,數值模擬,zh_TW
dc.subject.keywordGRS Walls,Marginal backfill,Failure mechanism,Model test,Numerical simulation,en
dc.relation.page387-
dc.identifier.doi10.6342/NTU202401620-
dc.rights.note未授權-
dc.date.accepted2024-07-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
18.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved