請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93117
標題: | 以機器學習分類方法結合選擇權資訊優化美國股市投資組合 Refining US Stock Market Portfolios through Machine Learning Classification and Option Information |
作者: | 李育昕 Yue-Hsin Lee |
指導教授: | 張森林 San-Lin Chung |
關鍵字: | 投資組合管理,機器學習,分類模型,類神經網路,極限梯度提升,輕量梯度提升,選擇權隱含資訊, Portfolio Management,Machine Learning,Classification Model,Neural Network,XGBoost,LightGBM,Option Implied Information, |
出版年 : | 2024 |
學位: | 碩士 |
摘要: | 本研究探討了納入選擇權資訊能否提升機器學習模型在預測個股未來報酬率方面的能力。結果顯示,當在已有的九個金融市場變數基礎上加入CP Spread、RI Spread 和Skew 等選擇權資訊後,模型的樣本外R 平方(R2 OOS)明顯提升。XGBoost 和LightGBM 模型在預測報酬率方面優於隨機森林和梯度提升迴歸樹,且單層類神經網路的R2_OOS 表現也較為優異。本研究比較了三種預測方法:報酬率數值預測、漲跌分類預測及本研究提出之TopMidBot 組別分類預測,結果發現後兩者能更有效地提供投資策略,特別是TopMidBot方法中的預測機率P(Bot)與TMB(P(Top) − P(Bot))以及漲跌分類預測之預測上漲機率P(Up)能顯著辨識出負向三因子超額報酬,幫助優化投資組合的風險與回報。本研究提出的「去除高P(Bot)、低 TMB 個股或是低 P(Up) 個股」投資策略,相較於基準投資組合,能有效降低風險並提升夏普比率,特別在小型股與成長股提升幅度最為明顯。 This study investigates whether incorporating option Information can enhance the performance of machine learning models in predicting individual stock future returns. The results indicate that adding option Information such as CP Spread, RI Spread, and Skew to the existing nine financial market variables significantly improves the out-of-sample R-squared (R2_OOS) of the models. Among the models tested, XGBoost and LightGBM outperform Random Forest and Gradient Boosting Regression Trees in return prediction. The single-layer neural network also shows superior R2_OOS performance. This research compares three prediction methods: return prediction, stock price trend classification, and TopMidBot group classification we proposed. The findings reveal that the latter two methods provide more effective investment strategies. Notably, in the TopMidBot method, the predicted probability P(Bot), TMB (P(Top) − P(Bot)), and the price trend classification prediction P(Up) can significantly identify negative three-factor excess returns, thus helping to optimize the risk and return of investment portfolios. The proposed investment strategies—excluding stocks with high P(Bot), low TMB, or low P(Up)—effectively reduce risk and improve the Sharpe ratio compared to benchmark portfolios, particularly for small-cap stocks and growth stocks. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93117 |
DOI: | 10.6342/NTU202401705 |
全文授權: | 同意授權(限校園內公開) |
電子全文公開日期: | 2029-07-11 |
顯示於系所單位: | 財務金融學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 1.02 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。