Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93115
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林國峰zh_TW
dc.contributor.advisorGwo-Fong Linen
dc.contributor.author黃詣翔zh_TW
dc.contributor.authorYi-Hsiang Huangen
dc.date.accessioned2024-07-17T16:29:43Z-
dc.date.available2024-07-18-
dc.date.copyright2024-07-17-
dc.date.issued2024-
dc.date.submitted2024-07-15-
dc.identifier.citationAshesh, A., Chang, C., Chen, B., Lin, H., Chen, B., Huang, T. (2022). Accurate and Clear Quantitative Precipitation Nowcasting Based on a Deep Learning Model with Consecutive Attention and Rain-Map Discrimination. Artif. Intell. Earth Syst., 1, e210005.https://doi.org/10.1175/AIES-D-21-0005.1
Beven, K. J., Kirkby, M. J., Schofield, N., & Tagg, A. F. (1984). Testing a physically-based flood forecasting model (TOPMODEL) for three UK catchments. Journal of hydrology, 69(1-4), 119–143. https://doi.org/10.1016/0022-1694(84)90159-8
Chen, L., Xu, J., Wang, G., Liu, H., Zhai, L., Li, S., Sun, C., & Shen, Z. (2018). Influence of rainfall data scarcity on non-point source pollution prediction: Implications for physically based models. Journal of Hydrology, 562, 1-16. https://doi.org/10.1016/j.jhydrol.2018.04.044
Cho, K., Merrienboer, B. V., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing.https://doi.org/10.3115/v1/d14-1179
Ding, Y., Zhu, Y., Wu, Y., Jun, F., & Cheng, Z. (2019). Spatio-Temporal Attention LSTM Model for Flood Forecasting. IEEE Access, pp. 458-465. https://doi.org/10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00095
Gouweleeuw, B.T., Thielen, J., Franchello, G., De Roo, A.P.J., & Buizza, R. (2005). Flood forecasting using medium-range probabilistic weather prediction. Hydrology and Earth System Sciences, 9, 365–380. https://doi.org/10.5194/hess-9-365-2005
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
Kao, I.F., Zhou, Y., Chang, L.C., & Chang, F.J. (2020). Exploring a Long Short-Term Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting. Journal of Hydrology, 583, 124631. https://doi.org/10.1016/j.jhydrol.2020.124631
Li, P., Zhang, J., & Krebs, P. (2022). Prediction of Flow Based on a CNN-LSTM Combined Deep Learning Approach. Water, 14, 993. https://doi.org/10.3390/w14060993
Lin, G.F., Chou, Y.C., & Wu, M.C. (2013). Typhoon flood forecasting using integrated two-stage Support Vector Machine approach. Journal of Hydrology, 486, 334-342.https://doi.org/10.1016/j.jhydrol.2013.02.012
Lobato, T.C., Hauser-Davis, R.A., Oliveira, T.F., Silveira, A.M., Silva, H.A.N., Tavares, M.R.M., & Saraiva, A.C.F. (2015). Construction of a novel water quality index and quality indicator for reservoir water quality evaluation: A case study in the Amazon region. Journal of Hydrology, 522, 674-683. https://doi.org/10.1016/j.jhydrol.2015.01.021
Maghrebi, M.F., & Ahmadi, A. (2017). Stage-discharge prediction in natural rivers using an innovative approach. Journal of Hydrology, 545, 172-181. https://doi.org/10.1016/j.jhydrol.2016.12.026
Rentschler, J., Salhab, M., & Jafino, B.A. (2022). Flood exposure and poverty in 188 countries. Nat Commun, 13, 3527. https://doi.org/10.1038/s41467-022-30727-4
Sabzipour, B., Arsenault, R., Troin, M., Martel, J.L., Brissette, F., Brunet, F., & Mai, J. (2023). Comparing a long short-term memory (LSTM) neural network with a physically-based hydrological model for streamflow forecasting over a Canadian catchment. Journal of Hydrology, 627, Part A, 130380. https://doi.org/10.1016/j.jhydrol.2023.130380
Schuster, M., & Paliwal, K.K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673-2681. https://doi.org/10.1109/78.650093
Seibert, J. (2000). Multi-criteria calibration of a conceptual runoff model using a genetic algorithm. Hydrology and Earth System Sciences Discussions, European Geosciences Union, 4(2), 215–224. https://doi.org/10.5194/hess-4-215-2000
Sreeparvathy, V., & Srinivas, V.V. (2022). Meteorological flash droughts risk projections based on CMIP6 climate change scenarios. npj Climate and Atmospheric Science, 5, 77. https://doi.org/10.1038/s41612-022-00302-1
Spanoudaki, K., Stamou, A.I., & Nanou-Giannarou, A. (2009). Development and verification of a 3-D integrated surface water–groundwater model. Journal of Hydrology, 375(3–4), 410-427. https://doi.org/10.1016/j.jhydrol.2009.06.041
Sutskever, I., Vinyals, O., & Le, Q.V. (2014). Sequence to Sequence Learning with Neural Networks. Proceedings of the 27th International Conference on Neural Information Processing Systems, 3104–3112. https://doi.org/10.48550/arXiv.1409.3215
Vapnik, V.N. (1995). The Nature of Statistical Learning Theory. Springer, New York.https://doi.org/10.1007/978-1-4757-2440-0
Yilmaz, M.U., & Onoz, B.A. (2000). Comparative Study of Statistical Methods for Daily Streamflow Estimation at Ungauged Basins in Turkey. Water, 12(2), 459. https://doi.org/10.3390/w12020459
Zhao, Q., Zhu, Y., Shu, K., Wan, D., Yu, Y., Zhou, X., & Liu, H. (2020). Joint Spatial and Temporal Modeling for Hydrological Prediction. IEEE Access, 8, 78492-78503. https://doi.org/10.1109/ACCESS.2020.2990181
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93115-
dc.description.abstract臺灣位於海洋和陸地交界,經常遭受到颱風及暴雨侵襲,於過去10年當中,平均每年約受到4個颱風影響。其豐沛的雨量往往會造成水庫水位迅速上升,若無法在短時間內宣洩,勢必會對人民的生命財產造成威脅,因此,有效率的運用水資源及防災預警至關重要。本研究將運用人工智慧(Artificial Intelligence, AI)方法,建置未來72小時之入庫流量預報模式,另有鑑於臺灣地區降雨分布極度不均的特性,本研究模式將納入此一重要降雨特徵,以期更精確反映實際狀況。
本研究以位於臺中市的德基水庫作為研究區域,蒐集2004至2022年颱風及暴雨事件之觀測雨量及水庫入庫流量,以6種人工智慧模式,如支援向量機(Support Vector Machines, SVM)、隨機森林(Random Forests, RF)、長短期記憶網路(Long short term memory network, LSTM)、雙向長短期記憶網路(Bidirectional Long Short-Term Memory Network, BiLSTM)、閘門循環單元(Gated Recurrent Unit, GRU)及序列到序列(Sequence to Sequence, Seq2Seq)預報未來1小時之流量,並以評鑑指標篩選機器學習與深度學習之較佳模式。將預報未來 1 小時較佳的模式介接多步階預報方法(Multi-step forecasting, MSF),與多元狀態向量方法(Multi-state-vector, MSV)於兩種輸入項(各雨量站雨量及流量和平均雨量及流量)進行預報未來72小時入流量之比較,並探討不同輸入項對於模式預報準確度之影響,以評鑑指標篩選最佳的預報模式。將該預報模式介接降雨預報產品,分析未來實際應用之可行性。
結果表明,在未來1小時預報中,於機器學習及深度學習模式,分別以SVM及以LSTM為基礎的Seq2Seq模式(LSTM-S2S)表現較佳,其中LSTM-S2S於RMSE、MAE、CE及CC值皆優於其他模式,展現其優秀的性能。在未來72小時預報中,以LSTM結合MSV之模式(LSTM-MSV-S2S)為最佳,於測試場次之RMSE值優於其餘模式約20~35%。於輸入項之比較中,該模式之輸入項採用各雨量站雨量及流量較優,其CC值高達0.871,說明此輸入項能夠反映出整體集水區降雨分布情況,有助於提高入流量預測的準確度。為驗證於實際應用之可行性,將此模式介接降雨預報產品,結果顯示,越臨近流量峰值發生時間,降雨預報產品的準確度將會顯著提高,使流量預報結果能夠更接近觀測值,在防災預警上仍然可提供相當重要的資訊。
本研究提出之LSTM-MSV-S2S且輸入項採用各雨量站雨量及流量之模式,可有效提升水庫入庫流量預報之準確度,於後續應用上,結合降雨預報產品,能夠及早取得入庫流量資料,期望未來可供學研、防災單位參考和做為水庫單位水庫操作策略之依據。
zh_TW
dc.description.abstractLocated at the junction of sea and land, Taiwan is frequently hit by typhoons and rainstorms, with an average of 4 typhoons per year in the past 10 years. The abundant rainfall often causes the reservoir level to rise rapidly, and if it cannot be released within a short period, it will definitely pose a threat to the people's lives and properties, therefore, it is critical to efficiently utilize the water resources and to provide disaster prevention and alerts. In this study, an Artificial Intelligence (AI) method is applied to construct a model for forecasting the inflow for the next 72 hours. In addition, in view of the extremely uneven distribution of rainfall in Taiwan, the model will incorporate this important rainfall feature in order to reflect the actual situation more accurately.
In this study, the Deji Reservoir in Taichung City was used as the study area, and the observed rainfall and reservoir inflow from typhoons and rainstorms from 2004 to 2022 were collected and analyzed using six AI models to analyze, such as Support Vector Machines (SVM), Random Forests (RF), Long Short-Term Memory Network (LSTM), Bidirectional Long Short-Term Memory Network (BiLSTM), Gated Recurrent Unit (GRU) and Sequence to Sequence (Seq2Seq) , are used to forecast inflow in the next hour, and the better models of machine learning and deep learning are filtered by evaluation metrics. The better model for forecasting inflow in the next hour is combined with the Multi-step forecasting (MSF) method and compared with the Multi-state-vector (MSV) method for forecasting inflow in the next 72 hours with two inputs. The effect of different inputs on the accuracy of the model was also investigated to select the best forecasting model using the evaluation metrics. The optimal model is then combined with the rainfall forecast data to analyze the feasibility of future practical applications.
The results show that the machine learning and deep learning models, SVM and LSTM-based Seq2Seq model (LSTM-S2S), perform better in the 1-hour forecast, and LSTM-S2S outperforms the other models in terms of RMSE, MAE, CE, and CC, demonstrating its excellent performance. In the next 72-hour prediction, the LSTM combined with MSV method(LSTM-MSV-S2S) is the best model, and its RMSE value in the test events is approximately 20~35% superior to the other models. In the comparison of the inputs, the inputs of this model with the rainfall at each rainfall station and inflow are better, and its CC value is as high as 0.871, which indicates that this input can reflect the overall rainfall distribution in the catchment, and help to improve the accuracy of the inflow prediction. In order to verify the feasibility of the model for practical application, this model was combined with a rainfall prediction product, and the results showed that the accuracy of the rainfall prediction product would be significantly improved nearer to the time of the peak flow occurred, so that the flow prediction results could be closer to the observed values, which could still provide important information for disaster prevention and early warning.
In this study, the proposed LSTM-MSV-S2S with inputs of the rainfall at each rainfall station and inflow can effectively improve the accuracy of reservoir inflow prediction, and in the subsequent application, combined with rainfall prediction products, the inflow data can be obtained as early as possible, and it is expected to be used for the future reference of academic research and disaster prevention departments, and as the basis of reservoir operation strategy for the reservoir units.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-17T16:29:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-17T16:29:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iv
目次 ix
圖次 xii
表次 xiv
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 3
1.2.1 傳統水庫入流量預報之方法 3
1.2.2 新興深度學習方法於水文之應用 4
1.3 論文架構 6
第二章 研究區域與資料 7
2.1 研究區域 7
2.2 研究資料 7
2.2.1 觀測雨量資料 8
2.2.2 預報雨量資料 8
2.2.3 入流量資料 8
2.3 颱風及豪雨事件分析 8
第三章 研究方法 13
3.1 機器學習方法 13
3.1.1 支援向量機 13
3.1.2 隨機森林 15
3.2 深度學習方法 17
3.2.1 長短期記憶網路 17
3.2.2 雙向長短期記憶網路 20
3.2.3 門閘遞迴單元 22
3.2.4 序列到序列 24
3.3 多步階預報 25
3.4 多元狀態向量 27
3.5 網格搜尋法 30
第四章 模式建立與評鑑指標 31
4.1 研究流程 31
4.2 模式建置 33
4.3 評鑑指標 34
第五章 結果與討論 35
5.1 未來1小時預報 35
5.1.1 因子篩選和參數率定 35
5.1.2 機器學習與深度學習模式於未來1小時預報之比較 40
5.2 未來72小時預報 52
5.2.1 因子篩選和參數率定 52
5.2.2 未來72小時預報模式之比較 57
5.2.3 不同輸入項對於模式之影響 60
5.3 介接降雨預報產品進行未來72小時預報 69
第六章 結論與建議 74
6.1 結論 74
6.2 建議 76
參考文獻 77
附錄A 81
-
dc.language.isozh_TW-
dc.subject水庫入庫流量預報zh_TW
dc.subject多元狀態向量zh_TW
dc.subject序列到序列zh_TW
dc.subject人工智慧zh_TW
dc.subject德基水庫zh_TW
dc.subjectDeji Reservoiren
dc.subjectSequence to Sequenceen
dc.subjectReservoir inflow forecastingen
dc.subjectMulti-State Vectoren
dc.subjectArtificial Intelligenceen
dc.title結合序列到序列和多元狀態向量方法發展水庫入庫流量預報zh_TW
dc.titleReservoir Inflow Forecasting by Combining the Sequence-to-sequence and the Multi-state-vector Methoden
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李方中;林軒宇;王志煌zh_TW
dc.contributor.oralexamcommitteeFang-Chung Li;Hsuan-Yu Lin;Jhih-Huang Wangen
dc.subject.keyword水庫入庫流量預報,德基水庫,人工智慧,序列到序列,多元狀態向量,zh_TW
dc.subject.keywordReservoir inflow forecasting,Deji Reservoir,Artificial Intelligence,Sequence to Sequence,Multi-State Vector,en
dc.relation.page84-
dc.identifier.doi10.6342/NTU202401771-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-15-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2029-07-15-
Appears in Collections:土木工程學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
8.38 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved