Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93106
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張秉純zh_TW
dc.contributor.advisorBiing-Chwen Changen
dc.contributor.author張大維zh_TW
dc.contributor.authorDa-Wei Changen
dc.date.accessioned2024-07-17T16:26:55Z-
dc.date.available2024-07-18-
dc.date.copyright2024-07-17-
dc.date.issued2024-
dc.date.submitted2024-07-12-
dc.identifier.citation[1] W. B. Kibler and M. Safran, “Kibler & Safran (2005), Tennis Injuries,” Epidemiology of Pediatric Sports Injuries, vol. 48, pp. 120–137, 2005.
[2] D. T. Gescheit et al., “Injury epidemiology of tennis players at the 2011-2016 Australian Open Grand Slam,” Br J Sports Med, vol. 51, no. 17, pp. 1289–1294, Sep. 2017, doi: 10.1136/bjsports-2016-097283.
[3] İ. Cam, B. Turhan, and Z. Onag, “The analysis of the last shots of the top-level tennis players in open tennis tournaments,” Turkish Journal of Sport and Exercise, vol. 15, no. 1, pp. 54–57, 2013, [Online]. Available: www.turksportexe.org
[4] C. Martin et al., “Can the Open Stance Forehand Increase the Risk of Hip Injuries in Tennis Players?,” Orthop J Sports Med, vol. 8, no. 12, pp. 1–12, 2020, doi: 10.1177/2325967120966297.
[5] T. J. Collings et al., “Gluteal Muscle Forces during Hip-Focused Injury Prevention and Rehabilitation Exercises,” Med Sci Sports Exerc, vol. 55, no. 4, pp. 650–660, Apr. 2023, doi: 10.1249/MSS.0000000000003091.
[6] 徐雅盈, “慣性阻力訓練裝置對運動表現的立即影響,” 長榮運動休閒學刊, vol. 16, pp. 1–9, Jun. 2022.
[7] D. Hoelbling, M. Grafinger, M. M. Smiech, D. Cizmic, P. Dabnichki, and A. Baca, “Acute response on general and sport specific hip joint flexibility to training with novel sport device,” Sports Biomech, 2021, doi: 10.1080/14763141.2021.1922742.
[8] 陳君豪, “網球運動能力之分析-以下肢為探討方向,” 《運動教練科學》, vol. 28, pp. 11–22, Dec. 2012.
[9] W. Hwang et al., “The effect of hip abductor fatigue on static balance and gait parameters,” Physical Therapy Rehabilitation Science, vol. 5, no. 1, pp. 34–39, 2016, doi: 10.14474/ptrs.2016.5.1.34.
[10] G. D. Abrams, P. A. Renstrom, and M. R. Safran, “Epidemiology of musculoskeletal injury in the tennis player,” Br J Sports Med, vol. 46, no. 7, pp. 492–498, 2012, doi: 10.1136/bjsports-2012-091164.
[11] Z. J. Zhang, W. C. Lee, G. Y. F. Ng, and S. N. Fu, “Isometric strength of the hip abductors and external rotators in athletes with and without patellar tendinopathy,” Eur J Appl Physiol, vol. 118, no. 8, pp. 1635–1640, 2018, doi: 10.1007/s00421-018-3896-x.
[12] “Andy Murray Hip Resurfacing Surgery: Former Tennis World No. 1 Now Has a Metal Hip.” Accessed: Apr. 30, 2024. [Online]. Available: https://www.thequint.com/fit/andy-murray-hip-resurfacing-surgery#read-more
[13] “As 4 posições dos pés no forehand, jogo de bola pes.” Accessed: Apr. 29, 2024. [Online]. Available: https://aviate.pl/As-4-posi-es-dos-p-s-no-forehand-3565452.html
[14] “See The Ball Like Novak Djokovic,” https://faulttoleranttennis.com/see-the-ball-like-novak-djokovic/.
[15] K. E. Roach and T. P. Miles, “Normal Hip and Knee Active Range of Motion: The Relationship to Age Abnoml,” Phys Ther, vol. 71, pp. 656–665, 1991, doi: 10.1515/BC.2006.073.
[16] C. Martin et al., “Can the Open Stance Forehand Increase the Risk of Hip Injuries in Tennis Players?,” Orthop J Sports Med, vol. 8, no. 12, pp. 1–12, 2020, doi: 10.1177/2325967120966297.
[17] M. S. Feigenbaum and M. L. Pollock, “Prescription of resistance training for health and disease,” Med Sci Sports Exerc, vol. 31, no. 1, pp. 38–45, 1999, doi: 10.1097/00005768-199901000-00008.
[18] W. J. Kraemer, N. D. Duncan, and J. S. Volek, “Resistance training and elite athletes: Adaptations and program considerations,” Journal of Orthopaedic and Sports Physical Therapy, vol. 28, no. 2, pp. 110–119, 1998, doi: 10.2519/jospt.1998.28.2.110.
[19] A. D. Faigenbaum and G. D. Myer, “Resistance training among young athletes: Safety, efficacy and injury prevention effects,” Br J Sports Med, vol. 44, no. 1, pp. 56–63, 2010, doi: 10.1136/bjsm.2009.068098.
[20] S. Wojtowicz et al., “Assessment of Impact of Activation of Hip Joint Abductors and External Rotators on Gait and Runnning Parameters in Healthy People - Pilot Study,” Acta kinesiologica, vol. 15, no. N1 2021, pp. 120–126, 2021, doi: 10.51371/issn.1840-2976.2021.15.1.14.
[21] “kBox | Flywheel training.” Accessed: Apr. 22, 2024. [Online]. Available: https://www.scienceforsport.com/kbox/
[22] “Flywheel Resistance Training: Benefits and How to Use it - Athletic Lab.” Accessed: Apr. 22, 2024. [Online]. Available: https://www.athleticlab.com/flywheel-resistance-training-a-revolution-in-fitness/
[23] “外骨骼與下肢機器人復健的應用.” Accessed: Apr. 22, 2024. [Online]. Available: https://www.drmbesuperior.com/post/%E5%A4%96%E9%AA%A8%E9%AA%BC%E8%88%87%E4%B8%8B%E8%82%A2%E6%A9%9F%E5%99%A8%E4%BA%BA%E5%BE%A9%E5%81%A5%E7%9A%84%E6%87%89%E7%94%A8
[24] K. R. Snyder, J. E. Earl, K. M. O’Connor, and K. T. Ebersole, “Resistance training is accompanied by increases in hip strength and changes in lower extremity biomechanics during running,” Clinical Biomechanics, vol. 24, no. 1, pp. 26–34, 2009, doi: 10.1016/j.clinbiomech.2008.09.009.
[25] Thomas Burton, “Study of Hip Exoskeleton Technology for Elderly Stability During Walking,” in World Automation Congress hybrid, San Antonio, TX, USA, Oct. 2022, pp. 11–15.
[26] T. Zhang, M. Tran, and H. Huang, NREL-Exo: A 4-DoFs Wearable Hip Exoskeleton for Walking and Balance Assistance in Locomotion. 2017. doi: 10.0/Linux-x86_64.
[27] P. R. CAVANAGH and R. KRAM, “Stride length in distance running,” Med Sci Sports Exerc, vol. 21, no. 4, p. 467???479, 1989, doi: 10.1249/00005768-198908000-00020.
[28] M. Pfeiffer, T. Dünte, S. Schneegass, F. Alt, and M. Rohs, “Cruise control for pedestrians: Controlling walking direction using electrical muscle stimulation,” Conference on Human Factors in Computing Systems - Proceedings, vol. 2015-April, no. April 2019, pp. 2505–2514, 2015, doi: 10.1145/2702123.2702190.
[29] V. Bartenbach, D. Wyss, D. Seuret, and R. Riener, “A lower limb exoskeleton research platform to investigate human-robot interaction,” IEEE International Conference on Rehabilitation Robotics, vol. 2015-Septe, pp. 600–605, 2015, doi: 10.1109/ICORR.2015.7281266.
[30] V. Bartenbach, M. Gort, and R. Riener, “Concept and Design of a Modular Lower Limb Exoskeleton,” 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 649–654, 2016, doi: 10.1109/BIOROB.2016.7523699.
[31] T. L. Yang, A. X. Liu, Q. Jin, Y. F. Luo, H. P. Shen, and L. Bin Hang, “Position and orientation characteristic equation for topological design of robot mechanisms,” Journal of Mechanical Design, vol. 131, no. 2, pp. 0210011–02100117, 2009, doi: 10.1115/1.2965364.
[32] A. B. Zoss, H. Kazerooni, and A. Chu, “Biomechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX),” IEEE/ASME Transactions on Mechatronics, vol. 11, no. 2, pp. 128–138, 2006, doi: 10.1109/TMECH.2006.871087.
[33] J. L. Hicks and J. G. Richards, “Clinical applicability of using spherical fitting to find hip joint centers,” Gait Posture, vol. 22, no. 2, pp. 138–145, 2005, doi: 10.1016/j.gaitpost.2004.08.004.
[34] Aolikes旗艦店, “運動護大腿護髖固定撐護具矯正帶肌肉拉傷防護護腿護臀護腰腿-Taobao,” https://world.taobao.com/item/558339014696.htm, 2024.
[35] DECATHLON, “DOMYOS 下肢訓練彈力帶 (多種磅數).” Accessed: Jun. 30, 2024. [Online]. Available: https://decathlon.tw/dsm-342532.html
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93106-
dc.description.abstract網球為常見的球類運動之一,由於須即時追蹤球路以擊球,因此必須配合大的髖關節角度以做出大跨步,但也因此導致髖關節的受傷風險提升。其中,防守型開放式站姿正拍的髖關節角度較大,在跑動所產生的衝量下更容易做出過大的角度,而肌力不足以負荷的部分易造成髖關節韌帶拉傷。因此本研究為針對防守型開放式站姿正拍之髖關節動作進行阻力訓練以減低賽事期間的受傷風險,開發一穿戴式髖關節阻力訓練裝置並探討其對髖關節活動與相關肌肉激發的影響。
為了分析防守型開放式站姿正拍的動作特徵,本研究將防守型開放式站姿正拍分為三個動作區間,並利用光學動作追蹤系統量測髖關節角度以及肌電訊號系統量測臀中肌、闊筋膜張肌、縫匠肌、臀大肌之激發。結果顯示在右腳踩地到擊球瞬間的區間會產生較日常生活大的髖關節外展與內旋且臀中肌、闊筋膜張肌、縫匠肌、臀大肌之激發程度皆偏高,因此裝置的設計著重在提供髖關節大外展與大內旋的阻力。
一般髖關節外骨骼式設計中針對內外旋的自由度常因為無法對正內旋-外旋旋轉軸而影響動作的流暢性,因此,本研究利用髖關節球接頭的特性提出一個以球面機構為基礎的三自由度髖關節外骨骼設計,以股骨頭球心做為三個旋轉接頭的轉軸相交中心,並在提供內外展及內外旋自由度的兩個旋轉接頭內設計一扭轉阻力機構,整體結構可根據人體尺寸進行調整。
為探討此穿戴式髖關節阻力訓練裝置對防守型開放式站姿正拍的影響,本研究比較五位業餘網球愛好者在未穿戴裝置、穿戴裝置但無扭轉阻力、與穿戴裝置且有扭轉阻力的條件下進行十次防守型開放式站姿正拍擊球,並以光學動作追蹤系統以及肌電訊號系統截取運動特徵以分析裝置所造成的變化。實驗結果發現在三個動作區間中,訓練目標之髖關節角度及肌肉激發程度均無顯著不同,表示髖關節的阻力訓練效果並不顯著。可能原因為裝置軟性穿戴的傳遞損失、受試者動作不精確、扭力彈簧力矩不足、受試者人數太少等原因導致。因此未來可針對裝置的能量傳遞進行改良並增加受試者人數。
zh_TW
dc.description.abstractTennis is one of the most common sports. Large hip joint angles are required when chasing the ball but also increase the risk of hip injuries. In particular, the defensive open stance involves larger hip angles than other stances. Excessive angles under running impact can lead to hip ligament strains due to insufficient muscle strength. This study focuses on resistance training for the hip joint in a defensive open stance forehand to reduce risks of injury during matches. We developed a wearable hip device for resistance training and investigated its effects on hip movements and related muscle activation.
To characterize the motion of the defensive open stance forehand, this study divided the motion into three phases by using an optical motion tracking system to measure the right hip joint angle and an electromyography (EMG) system to measure the activation of the gluteus medius, tensor fasciae latae, sartorius, and gluteus maximus. The results showed that during the phase from right foot strike to ball hitting, there were larger hip abduction and internal rotation angles compared to everyday activities, and the activation levels of the gluteus medius, tensor fasciae latae, sartorius, and gluteus maximus were all high. Therefore, the device design focused on providing resistance for large hip abduction and internal rotation.
The study proposes a novel approach to hip exoskeleton design. Traditionally, such designs often affect motion fluidity due to misalignment of the internal-external rotation axis. To overcome this, the study introduces a spherical mechanism-based three-degree-of-freedom hip exoskeleton design. This design utilizes the characteristics of the hip joint ball socket, with the femoral head's ball center serving as the intersection of the three rotation joints. A torsion resistance mechanism is integrated into the two rotational joints that provide internal-external abduction and rotation. The overall structure is adjustable according to human body dimensions, making it a promising solution for improving motion fluidity in hip exoskeletons.
The study's investigation into the impact of the wearable hip resistance training device on the defensive open stance forehand yielded interesting results. Five amateur tennis enthusiasts were compared under three conditions: without the device, with the device but without torsion resistance, and with the device and torsion resistance. Each participant performed ten defensive open stance forehands, and their motion characteristics were analyzed. The experimental results showed no significant differences in hip angles and muscle activation levels across the three phases, indicating that the hip resistance training effect was not significant. However, it's important to note that these findings may be influenced by factors such as the soft wearable device's transmission loss, imprecise participant movements, insufficient torque from the torsion springs, and the small number of participants. These potential limitations suggest avenues for future research and improvement of the device.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-17T16:26:55Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-17T16:26:55Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目 次 v
圖 次 vii
表 次 x
第一章 緒論 1
1.1 背景與動機 1
1.2 文獻回顧 2
1.2.1 網球之髖關節運動傷害及影響 2
1.2.2 防守型開放式站姿正拍與髖關節負荷 4
1.2.3 傳統髖關節阻力訓練 7
1.2.4 新式及外骨骼式髖關節阻力訓練裝置 9
1.2.5 結論 14
1.3 研究目的與目標 15
1.4 論文架構 15
第二章 防守型開放式站姿正拍動作分析 16
2.1 人體實驗 16
2.1.1 實驗目的 16
2.1.2 實驗架設 16
2.1.3 實驗步驟 24
2.2 防守型開放式站姿正拍動作流程 26
2.3 實驗數據分析方法 28
2.3.1 光學動作追蹤 28
2.3.2 肌電訊號分析 31
2.4 結果 33
2.4.1 關節角度與肌電訊號分析結果與討論 33
2.4.2 結論 35
第三章 被動式髖關節穿戴裝置設計 36
3.1 前言 36
3.2 機構設計 36
3.2.1 先前設計 36
3.2.2 旋轉軸共心球面機構 39
3.2.3 球型擬合法 40
3.2.4 機構功能需求分析 42
3.3 實體設計 43
3.3.1 整體結構 43
3.3.2 細部設計 45
3.4 順向機構運動學分析 64
3.4.1 齊次變換矩陣 64
3.4.2 工作範圍分析 65
3.5 設計總結與討論 67
第四章 被動式髖關節穿戴裝置對防守型開放式站姿正拍影響之探討 69
4.1 人體實驗與數據分析 69
4.1.1 實驗目的及流程 69
4.1.2 實驗對象及裝置適應性 70
4.1.3 實驗數據與統計分析方法 71
4.2 實驗結果與比較 72
4.2.1 實驗髖關節角度分析結果 72
4.2.2 實驗髖關節肌群激發程度分析結果 78
4.3 實驗結論、限制以及展望 87
第五章 結論 90
REFERENCE 93
APPENDIX 98
-
dc.language.isozh_TW-
dc.subject阻力訓練zh_TW
dc.subject髖關節zh_TW
dc.subject穿戴式裝置zh_TW
dc.subject網球動作分析zh_TW
dc.subjectTennis motion analysisen
dc.subjectHip joint motionen
dc.subjectResistance trainingen
dc.subjectHip wearable deviceen
dc.title被動髖關節穿戴裝置的開發與網球防守型開放式站姿正拍阻力訓練的應用zh_TW
dc.titleDevelopment of a Passive Hip Wearable Device for Defensive Open Stance Forehand Resistance Training in Tennisen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee梁蕙雯;顏炳郎zh_TW
dc.contributor.oralexamcommitteeHuey-Wen Liang;Ping-Lang Yenen
dc.subject.keyword網球動作分析,髖關節,阻力訓練,穿戴式裝置,zh_TW
dc.subject.keywordTennis motion analysis,Hip joint motion,Resistance training,Hip wearable device,en
dc.relation.page111-
dc.identifier.doi10.6342/NTU202401658-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2029-07-11-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
6.56 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved