請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93097
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 胡哲明 | zh_TW |
dc.contributor.advisor | Jer-Ming Hu | en |
dc.contributor.author | 林郁芹 | zh_TW |
dc.contributor.author | Yu-Chin Lin | en |
dc.date.accessioned | 2024-07-17T16:24:08Z | - |
dc.date.available | 2024-07-18 | - |
dc.date.copyright | 2024-07-17 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-05 | - |
dc.identifier.citation | 王紓愍,陳嘉昇,游翠凰,劉信宏(2010)。豆科牧草與綠肥作物之氮產量與季節性變動。畜產研究,43(4),339–350。
田偉,高麗,謝曉亮,周巧梅,溫春秀,劉銘(2008)。遠志種子發芽檢驗標準化研究。種子,27(2),99–101。 林士堯,楊承道(2023)。網格化觀測資料說明文件 (2.5版)。[2023 年7 月],取自臺灣氣候變遷推估資訊與調適知識平台:https://tccip.ncdr.nat.gov.tw/upload/ data_document/20220708162241.pdf 翁敏娟,林士堯(2022)。網格化衛星反演日資料說明文件 (2.3版)。[2023 年7 月],取自臺灣氣候變遷推估資訊與調適知識平台:https://tccip.ncdr.nat.gov.tw/ upload/data_document/20210415152331.pdf 崔芬芬,陳亮,任豔文,喬永剛,宋芸(2016)。溫度及光照對遠志種子發芽的影響。種子科技,34(12),108–109。 張潔,張瑩,賈小雲,孫寶旭,張瑞瑞,馬存根,梁建萍(2019)。遠志養分吸收規律及其與藥效成分積累的關係。植物營養與肥料學報,2(7),1230–1238。 彭亮,楊冰月,張崗,趙停,孫濤,胡本祥。(2018)。乾旱脅迫對遠志種子萌發及幼苗生長和生理特性的影響。西北植物學報,38(4),741–749。 蘇鴻傑(1984)。臺灣天然林氣候帶與植群型之研究(二)山地植群帶與溫度梯度之關係。中華林學季刊,17(14),57–73。 Ackerly, D., Knight, C., Weiss, S., Barton, K., & Starmer, K. (2002). Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia, 130(3), 449–457. https://doi.org.10.1007/s004420100805 Alokam, S., Chinnappa, C. C., & Reid, D. M. (2002). Red/far-red light mediated stem elongation and anthocyanin accumulation in Stellaria longipes: differential response of alpine and prairie ecotypes. Canadian Journal of Botany, 80(1), 72–81. https://doi.org.10.1139/b01-137 Angert, A. L., & Schemske, D. W. (2005). The evolution of species'distributions: reciprocal transplants across the elevation ranges of mimulus cardinalis and m. lewisii. Evolution, 59(8), 1671–1684. https://doi.org.10.1111/j.0014-3820. 2005. tb01817.x Atkin, O. K., Loveys, B. R., Atkinson, L. J., & Pons, T. L. (2006). Phenotypic plasticity and growth temperature: understanding interspecific variability. Journal of Experimental Botany, 57(2), 267–281. https://doi.org.10.1093/jxb/erj029 Baher, Z. F., Mirza, M., Ghorbanli, M., & Bagher Rezaii, M. (2002). The influence of water stress on plant height, herbal and essential oil yield and composition in Satureja hortensis L. Flavour and Fragrance Journal, 17(4), 275–277. https://doi.org.10.1002/ffj.1097 Bakhtiari, M., Formenti, L., Caggìa, V., Glauser, G., & Rasmann, S. (2019). Variable effects on growth and defense traits for plant ecotypic differentiation and phenotypic plasticity along elevation gradients. Ecology and Evolution, 9(7), 3740–3755. https://doi.org.10.1002/ece3.4999 Balakumar, T., Vincent, V. H. B., & Paliwal, K. (1993). On the interaction of UV‐B radiation (280–315 nm) with water stress in crop plants. Physiologia Plantarum, 87(2), 217–222. https://doi.org.10.1111/j.1399-3054.1993.tb00145.x Barickman, T. C., Simpson, C. R., & Sams, C. E. (2019). Waterlogging causes early modification in the physiological performance, carotenoids, chlorophylls, proline, and soluble sugars of cucumber plants. Plants, 8(6), 160. https://doi.org.10. 3390/plants806 0160 Baskin, C. C., & Baskin, J. M. (1998). Seeds: ecology, biogeography, and, evolution of dormancy and germination. Elsevier Publishers. Baughman, O. W., Agneray, A. C., Forister, M. L., Kilkenny, F. F., Espeland, E. K., Fiegener, R., ... & Leger, E. A. (2019). Strong patterns of intraspecific variation and local adaptation in Great Basin plants revealed through a review of 75 years of experiments. Ecology and Evolution, 9(11), 6259–6275. https://doi.org.10. 1002/ece3.5200 Berend, K., Haynes, K., & MacKenzie, C. M. (2019). Common garden experiments as a dynamic tool for ecological studies of alpine plants and communities in northeastern North America. Rhodora, 121(987), 174–212. https://doi.org.10.3119/18-16 Bischoff, A., & Müller‐Schärer, H. (2010). Testing population differentiation in plant species–how important are environmental maternal effects. Oikos, 119(3), 445–454. https://doi.org.10.1111/j.1600-0706.2009.17776.x Bischoff, A., Vonlanthen, B., Steinger, T., & Müller-Schärer, H. (2006). Seed provenance matters-effects on germination of four plant species used for ecological restoration. Basic and Applied Ecology, 7(4), 347–359. https://doi.org.10.1016/j.baae. 2005.07.009 Blanquart, F., Kaltz, O., Nuismer, S. L., & Gandon, S. (2013). A practical guide to measuring local adaptation. Ecology Letters, 16(9), 1195–1205. https://doi.org. 10.1111/el e.12150 Botto, J. F. (2015). Plasticity to simulated shade is associated with altitude in structured populations of Arabidopsis thaliana. Plant, Cell & Environment, 38(7), 1321–1332. doi:10.1111/pce.12481 Boyer, J. S. (1982). Plant productivity and environment. Science, 218(4571), 443–448. https://doi.org.10.1126/science.218.4571.443 Bradshaw, A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics, 13, 115–155. https://doi.org.10.1016/S0065-2660(08)60048-6 Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., Jiménez-Alfaro, B., Hennekens, S. M., ... & Jandt, U. (2018). Global trait-environment relationships of plant communities. Nature Ecology & Evolution, 2(12), 1906–1917. https://doi.org.10. 1038/s41559-018-0699-8 Byars, S. G., Papst, W., & Hoffmann, A. A. (2007). Local adaptation and cogradient selection in the alpine plant, Poa hiemata, along a narrow altitudinal gradient. Evolution: International Journal of Organic Evolution, 61(12), 2925–2941. https://doi.org.10.1111/j.1558-5646.2007.00248.x Caldwell, M. M., Bornman, J. F., Ballaré, C. L., Flint, S. D., & Kulandaivelu, G. (2007). Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochemical & Photobiological Sciences, 6(3), 252–266. https://doi.org.10.1039/B700019G Callaway, R. M., Brooker, R. W., Choler, P., Kikvidze, Z., Lortie, C. J., Michalet, R., ... & Cook, B. J. (2002). Positive interactions among alpine plants increase with stress. Nature, 417(6891), 844–848. https://doi.org.10.1038/nature00812 Carter, D. L., & Blair, J. M. (2012). Seed source affects establishment and survival for three grassland species sown into reciprocal common gardens. Ecosphere, 3(11), 1–10. https://doi.org.10.1890/ES12-00223.1 Cordell, S., Goldstein, G., Mueller-Dombois, D., Webb, D., & Vitousek, P. M. (1998). Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: the role of phenotypic plasticity. Oecologia, 113(2), 188–196. https://doi.org.10.1007/s004420050367 Craine, J. M., Berin, D. M., Reich, P. B., Tilman, D. G., & Knops, J. M. H. (1999). Measurement of leaf longevity of 14 species of grasses and forbs using a novel approach. The New Phytologist, 142(3), 475–481. https://doi.org.10.1046/j.1469-8137.1999.00411.x Díaz, S., Kattge, J., Cornelissen, J. H., Wright, I. J., Lavorel, S., Dray, S., ... & Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529(7585), 167–171. https://doi.org.10.1038/nature16489 Díaz, S., McIntyre, S., Lavorel, S., & Pausas, J. G. (2002). Does hairiness matter in Harare? Resolving controversy in global comparisons of plant trait responses to ecosystem disturbance. New Phytologist, 154(1), 7–9. https://doi.org.10.1046/j.1469-8137. 2002. 00362.x Diemer, M. (1998). Life span and dynamics of leaves of herbaceous perennials in high‐elevation environments:‘news from the elephant’s leg’. Functional Ecology, 12(3), 413–425. https://doi.org.10.1046/j.1365-2435.1998.00207.x Diemer, M., Körner, C., & Prock, S. (1992). Leaf life spans in wild perennial herbaceous plants: a survey and attempts at a functional interpretation. Oecologia, 89, 10–16. https://doi.org.10.1007/BF00319009 Donohue, K., Rubio de Casas, R., Burghardt, L., Kovach, K., & Willis, C. G. (2010). Germination, postgermination adaptation, and species ecological ranges. Annual Review of Ecology, Evolution, and Systematics, 41, 293–319. https://doi.org. 10.1146/ annurev-ecolsys-102209-144715 Ebeling, S. K., Stöcklin, J., Hensen, I., & Auge, H. (2011). Multiple common garden experiments suggest lack of local adaptation in an invasive ornamental plant. Journal of Plant Ecology, 4(4), 209–220. https://doi.org.10.1093/jpe/rtr007 Emery, R. J. N., Chinnappa, C. C., & Chmielewski, J. G. (1994). Specialization, plant strategies, and phenotypic plasticity in populations of Stellaria longipes along an elevational gradient. International Journal of Plant Sciences, 155(2), 203–219. https://doi.org.10.1086/297160 Falster, D. S., & Westoby, M. (2003). Plant height and evolutionary games. Trends in Ecology & Evolution, 18(7), 337–343. https://doi.org.10.1016/S0169-5347(03) 00061-2 Fang, M. F., Li, J., Zhou, T. H., Yang, J., & Zhao, G. F. (2012). Genetic diversity in natural populations of the medicinal herb Polygala tenuifolia Willd. and its implications for conservation. Biochemical Systematics and Ecology, 44, 400–406. https://doi.org. 10.1016/j.bse.2012.06.016 Fonseca, C. R., Overton, J. M., Collins, B., & Westoby, M. (2000). Shifts in trait‐combinations along rainfall and phosphorus gradients. Journal of Ecology, 88(6), 964–977. https://doi.org.10.1046/j.1365-2745.2000.00506.x Fox, J. & Weisberg, S. (2019). An R Companion to Applied Regression (3th ed.). Sage Publishers. Franklin, K. A. (2008). Shade avoidance. New Phytologist, 179(4), 930–944. https://doi.org.10.1111/j.1469-8137.2008.02507.x Franks, S. J., Sim, S., & Weis, A. E. (2007). Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proceedings of the National Academy of Sciences, 104(4), 1278–1282. doi:10.1073/pnas.0608379104 Gan, S., & Amasino, R. M. (1997). Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiology, 113(2), 313. https://doi.org.10.1104/pp.113.2.313 Garland Jr, T., & Kelly, S. A. (2006). Phenotypic plasticity and experimental evolution. Journal of Experimental Biology, 209(12), 2344–2361. https://doi.org.10.1242 /jeb.02244 Geange, S. R., Briceño, V. F., Aitken, N. C., Ramirez-Valiente, J. A., Holloway-Phillips, M. M., & Nicotra, A. B. (2017). Phenotypic plasticity and water availability: responses of alpine herb species along an elevation gradient. Climate Change Responses, 4(1), 1–12. https://doi.org.10.1186/s40665-017-0033-8 Gedroc, J. J., McConnaughay, K. D. M., & Coleman, J. S. (1996). Plasticity in root/shoot partitioning: optimal, ontogenetic, or both? Functional Ecology, 10, 44–50. https://doi. org.10.2307/2390260 Ghalambor, C. K., McKay, J. K., Carroll, S. P., & Reznick, D. N. (2007). Adaptive versus non‐adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology, 21(3), 394–407. https://doi.org.10.1111 /j.1365-2435.2007.01283.x Gibson, A. L., Espeland, E. K., Wagner, V., & Nelson, C. R. (2016). Can local adaptation research in plants inform selection of native plant materials? An analysis of experimental methodologies. Evolutionary Applications, 9(10), 1219–1228. https://doi.org.10.1111/eva.12379 Giménez-Benavides, L., Escudero, A., & Iriondo, J. M. (2007). Local adaptation enhances seedling recruitment along an altitudinal gradient in a high mountain Mediterranean plant. Annals of botany, 99(4), 723–734. https://doi.org.10.1093/ aob/mcm007 Givnish, T. J. (1982). On the adaptive significance of leaf height in forest herbs. The American Naturalist, 120(3), 353–381. https://doi.org.10.1086/283995 Givnish, T. J. (1987). Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constraints. New Phytologist, 106, 131–160. https://doi.org.10.1111/j.1469-8137.1987.tb04687.x Gordon, D. R., & Rice, K. J. (1998). Patterns of differentiation in wiregrass (Aristida beyrichiana): implications for restoration efforts. Restoration Ecology, 6(2), 166–174. https://doi.org.10.1111/j.1526-100X.1998.00627.x Gratani, L., Catoni, R., Pirone, G., Frattaroli, A. R., & Varone, L. (2012). Physiological and morphological leaf trait variations in two Apennine plant species in response to different altitudes. Photosynthetica, 50, 15–23. https://doi.org.10.1007/s11099-012-0006-x Green, T. G. A., & Jane, G. T. (1983). Diurnal patterns of water potential in the evergreen cloud forests of the Kaimai Ranges, North Island, New Zealand. New Zealand Journal of Botany, 21(4), 379–389. https://doi.org.10.1080/0028825X.1983.104 28570 Grime, J. P. (2006). Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. Journal of Vegetation Science, 17(2), 255–260. https://doi.org.10.1111/j.1654-1103.2006.tb02444.x Gurevitch, J. (1992). Sources of variation in leaf shape among two populations of Achillea lanulosa. Genetics, 130(2), 385–394. https://doi.org.10.1093/genetics/130.2.385 Gutschick, V. P., & Wiegel, F. W. (1988). Optimizing the canopy photosynthetic rate by patterns of investment in specific leaf mass. The American Naturalist, 132(1), 67–86. https://doi.org.10.1086/284838 Halbritter, A. H., Fior, S., Keller, I., Billeter, R., Edwards, P. J., Holderegger, R., ... & Alexander, J. M. (2018). Trait differentiation and adaptation of plants along elevation gradients. Journal of Evolutionary Biology, 31(6), 784–800. https://doi.org. 10.1111/jeb.13262 Hamann, E., Kesselring, H., & Stöcklin, J. (2018). Plant responses to simulated warming and drought: a comparative study of functional plasticity between congeneric mid and high elevation species. Journal of Plant Ecology, 11(3), 364–374. https://doi.org. 10.1093/jpe/rtx023 Herman, J. J., & Sultan, S. E. (2011). Adaptive transgenerational plasticity in plants: case studies, mechanisms, and implications for natural populations. Frontiers in Plant Science, 2, 102. https://doi.org.10.3389/fpls.2011.00102 Hoch, W. A., Zeldin, E. L., & McCown, B. H. (2001). Physiological significance of anthocyanins during autumnal leaf senescence. Tree Physiology, 21(1), 1–8. https://doi.org.10.1093/treephys/21.1.1 Hovenden, M. J., & Vander Schoor, J. K. (2004). Nature vs nurture in the leaf morphology of Southern beech, Nothofagus cunninghamii (Nothofagaceae). New Phytologist, 161(2), 585–594. https://doi.org.10.1046/j.1469-8137.2003.00931.x Hoyle, G. L., Steadman, K. J., Good, R. B., McIntosh, E. J., Galea, L. M., & Nicotra, A. B. (2015). Seed germination strategies: an evolutionary trajectory independent of vegetative functional traits. Frontiers in Plant Science, 6, 731. https://doi.org. 10.3389/ fpls.2015.00731 Huang, T. C. (1994). Polygala. In T. C., Huang et al. (Eds.), Flora of Taiwan (2nd ed., Vol. 3, pp.571–576). National Taiwan University Press. Jiménez‐Alfaro, B., Silveira, F. A., Fidelis, A., Poschlod, P., & Commander, L. E. (2016). Seed germination traits can contribute better to plant community ecology. Journal of Vegetation Science, 27(3): 637–645. https://doi.org.10.1111/jvs.12375 Jordan, C. Y., Ally, D., & Hodgins, K. A. (2015). When can stress facilitate divergence by altering time to flowering? Ecology and Evolution, 5(24), 5962–5973. https://doi.org. 10.1002/ece3.1821 Kassambara A., Kosinski M. & Biecek P. (2021). survminer: Drawing Survival Curves using 'ggplot2'. R package version 0.4.9. https://CRAN.R-project.org/package= survminer Kawecki, T. J., & Ebert, D. (2004). Conceptual issues in local adaptation. Ecology Letters, 7(12), 1225–1241. https://doi.org.10.1111/j.1461-0248.2004.00684.x Kim, E., & Donohue, K. (2013). Local adaptation and plasticity of Erysimum capitatum to altitude: its implications for responses to climate change. Journal of Ecology, 101(3), 796–805. https://doi.org.10.1111/1365-2745.12077 Kleinbaum, D. G., & Klein, M. (2012). Survival analysis: a self-learning text (Vol. 3). Springer Publishers. Klimeš, L., & Klimešová, J. (2002). The effects of mowing and fertilization on carbohydrate reserves and regrowth of grasses: do they promote plant coexistence in species-rich meadows? In Ecology and Evolutionary Biology of Clonal Plants: Proceedings of Clone-2000. An International Workshop held in Obergurgl, Austria, 20–25 August 2000 (pp. 141–160). Springer Netherlands. https://doi.org.10.1007 /978-94-017-1345-0_8 Körner, C. (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. (2nd ed., pp.1–7). Springer-Verlag Publishers. Körner, C. (2007). The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution, 22(11), 569–574. https://doi.org.10.1016/j.tree.2007.09.006 Körner, C., & Cochrane, P. M. (1985). Stomatal responses and water relations of Eucalyptus pauciflora in summer along an elevational gradient. Oecologia, 66(3), 443–455. https://doi.org.10.1007/BF00378313 Körner, C., & Diemer, M. (1987). In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Functional Ecology, 179–194. https://doi.org.10.2307/2389420 Körner, C., & Renhardt, U. (1987). Dry matter partitioning and root length/ leaf area ratios in herbaceous perennial plants with diverse altitudinal distribution. Oecologia, 411–418. https://doi.org.10.1007/BF00378938 Körner, C., Bannister, P., & Mark, A. F. (1986). Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand. Oecologia, 69(4), 577–588. https://doi.org.10.1007/BF00410366 Krizek, D. T. (2004). Influence of PAR and UV‐A in Determining Plant Sensitivity and Photomorphogenic Responses to UV‐B Radiation. Photochemistry and Photobiology, 79(4), 307–315. https://doi.org.10.1111/j.1751-1097.2004.tb00013.x Lacaille-Dubois, M. A., Delaude, C., & Mitaine-Offer, A. C. (2020). A review on the phytopharmacological studies of the genus Polygala. Journal of Ethnopharmacology, 249, 112417. https://doi.org.10.1016/j.jep.2019.112417 Landi, M., Tattini, M., & Gould, K. S. (2015). Multiple functional roles of anthocyanins in plant-environment interactions. Environmental and Experimental Botany, 119, 4–17. https://doi.org.10.1016/j.envexpbot.2015.05.012 Leimu, R., & Fischer, M. (2008). A meta-analysis of local adaptation in plants. PLoS ONE, 3(12), e4010. https://doi.org.0.1371/journal.pone.0004010 Lenssen, J. P. M., Menting, F. B. J., & Van der Putten, W. H. (2003). Plant responses to simultaneous stress of waterlogging and shade: amplified or hierarchical effects? New Phytologist, 157(2), 281–290. https://doi.org.10.1046/j.1469-8137.2003. 00666.x Li, C.-F., Chytrý, M., Zelený, D., Chen, M.-Y., Chen, T.-Y., Chiou, C.-R., Hsia, Y.-J., Liu, H.-Y., Yang, S.-Z., Yeh, C.-L., Wang, J.-C., Yu, C.-F., Lai, Y.-J., Chao, W.-C., & Hsieh, C.-F. (2013). Classification of Taiwan forest vegetation. Applied Vegetation Science, 16(4), 698–719. https://doi.org.10.1111/avsc.12025 Li, F. L., Liu, X., & Bao, W. K. (2016). Leaf lifespan is positively correlated with periods of leaf production and reproduction in 49 herb and shrub species. Ecology and Evolution, 6(11), 3822–3831. https://doi.org.10.1002/ece3.2147 Li, Y., Zou, D., Shrestha, N., Xu, X., Wang, Q., Jia, W., & Wang, Z. (2020). Spatiotemporal variation in leaf size and shape in response to climate. Journal of Plant Ecology, 13(1), 87–96. https://doi.org.10.1093/jpe/rtz053 Lin, H.-Y., Hu, J.-M., Chen, T.-Y., Hsieh, C.-F., Wang, G., & Wang, T. (2018). A dynamic downscaling approach to generate scale-free regional climate data in Taiwan. Taiwania, 63(3), 251–266. https://doi.org.10.6165/tai.2018.63.251 Liu, W., Zheng, L., & Qi, D. (2020). Variation in leaf traits at different altitudes reflects the adaptive strategy of plants to environmental changes. Ecology and Evolution, 10(15), 8166–8175. https://doi.org.10.1002/ece3.6519 Ma, W., Shi, P., Li, W., He, Y., Zhang, X., Shen, Z., & Chai, S. (2010). Changes in individual plant traits and biomass allocation in alpine meadow with elevation variation on the Qinghai-Tibetan Plateau. Science China Life Sciences, 53, 1142–1151. https://doi.org.10.1007/s11427-010-4054-9 Maier, A., & Hoecker, U. (2015). COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions. Plant Signaling & Behavior, 10(1), e970440. https://doi.org.10.4161/15592316.2014.970440. Mašková, T., & Herben, T. (2018). Root: shoot ratio in developing seedlings: How seedlings change their allocation in response to seed mass and ambient nutrient supply. Ecology and Evolution, 8(14), 7143–7150. https://doi.org.10.1002 /ece3.4238 McDonald, P. G., Fonseca, C. R., McC, J., & Westoby, M. (2003). Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Functional Ecology, 50–57. https://doi.org.10.1046/j.1365-2435.2003.00698.x McDonough MacKenzie, C., Primack, R. B., & Miller‐Rushing, A. J. (2018). Local environment, not local adaptation, drives leaf‐out phenology in common gardens along an elevational gradient in Acadia National Park, Maine. American Journal of Botany, 105(6), 986–995. https://doi.org.10.1002/ajb2.1108 McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21(4), 178–185. https://doi.org.10.1016/j.tree.2006.02.002 McGraw, J. B., & Antonovics, J. (1983). Experimental ecology of Dryas octopetala ecotypes: I. Ecotypic differentiation and life-cycle stages of selection. The Journal of Ecology, 879–897. https://doi.org.10.2307/2259599 McIntyre, P. J., & Strauss, S. Y. (2014). Phenotypic and transgenerational plasticity promote local adaptation to sun and shade environments. Evolutionary Ecology, 28, 229–246. https://doi.org.10.1007/s10682-013-9670-y Midolo, G., De Frenne, P., Hölzel, N., & Wellstein, C. (2019). Global patterns of intraspecific leaf trait responses to elevation. Global Change Biology, 25(7), 2485–2498. https://doi.org.10.1111/gcb.14646 Miglia, K. J., Mcarthur, E. D., Moore, W. S., Wang, H., Graham, J. H., & Freeman, D. C. (2005). Nine-year reciprocal transplant experiment in the gardens of the basin and mountain big sagebrush (Artemisia tridentata: Asteraceae) hybrid zone of Salt Creek Canyon: the importance of multiple-year tracking of fitness. Biological Journal of the Linnean Society, 86(2), 213–225. https://doi.org.10.1111/j.1095-8312.2005. 00534.x Mojica, J. P., & Kelly, J. K. (2010). Viability selection prior to trait expression is an essential component of natural selection. Proceedings of the Royal Society B: Biological Sciences, 277(1696), 2945–2950. https://doi.org.10.1098/rspb.2010.0568 Moles, A. T. (2018). Being John Harper: Using evolutionary ideas to improve understanding of global patterns in plant traits. Journal of Ecology, 106(1), 1–18. https://doi.org.10.1111/1365-2745.12887 Moles, A. T., & Leishman, M. R. (2008). The seedling as part of a plant’s life history strategy. Seedling Ecology and Evolution, 217–238. https://doi.org.10.1017/ CBO9780511815 133. 012 Montalvo, A. M., & Ellstrand, N. C. (2001). Nonlocal transplantation and outbreeding depression in the subshrub Lotus scoparius (Fabaceae). American Journal of Botany, 88(2), 258–269. https://doi.org.10.2307/2657017 Montesinos-Navarro, A., Wig, J., Picó, F. X. & Tonsor, S. J. (2011). Arabidopsis thaliana populations show clinal variation in a climatic gradient associated with altitude. New Phytologist, 189(1), 282–294. https://doi.org.10.1111/j.1469-8137.2010.03479.x Moore, D. F. (2016). Applied survival analysis using R (Vol. 473). Springer Publishers. https://doi.org.10.1007/978-3-319-31245-3 Münzbergová, Z. (2004). Effect of spatial scale on factors limiting species distributions in dry grassland fragments. Journal of Ecology, 92(5), 854–867. https://doi.org. 10.1111/ j.0022-0477.2004.00919.x Najeeb, U., Bange, M. P., Atwell, B. J., & Tan, D. K. Y. (2016). Low incident light combined with partial waterlogging impairs photosynthesis and imposes a yield penalty in cotton. Journal of Agronomy and Crop Science, 202(4), 331–341. https://doi.org.10.1111/ja c.12164 Nakagawa, M. (2004). Genetic diversity of fragmented populations of Polygala reinii (Polygalaceae), a perennial herb endemic to Japan. Journal of Plant Research, 117, 355-361. https://doi.org.10.1007/s10265-004-0167-1 Nakagawa, M. (2010). Fine-scale genetic structure within plots of Polygala reinii (Polygalaceae) having an ant-dispersal seed. Journal of Plant Research, 123, 355–362. https://doi.org.10.1007/s10265-009-0276-y Nicotra, A. B., Leigh, A., Boyce, C. K., Jones, C. S., Niklas, K. J., Royer, D. L., & Tsukaya, H. (2011). The evolution and functional significance of leaf shape in the angiosperms. Functional Plant Biology, 38(7), 535–552. https://doi.org.10.1071/FP11057 Peppe, D. J., Royer, D. L., Cariglino, B., Oliver, S. Y., Newman, S., Leight, E., ... & Wright, I. J. (2011). Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist, 190(3), 724–739. https://doi.org. 10.1111/ j.1469-8137.2010.03615.x Pérez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., ... & Cornelissen, J. H. C. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167–234. https://doi.org.10.1071/BT12225_CO Pfennig, D. W., Wund, M. A., Snell-Rood, E. C., Cruickshank, T., Schlichting, C. D., & Moczek, A. P. (2010). Phenotypic plasticity's impacts on diversification and speciation. Trends in Ecology & Evolution, 25(8), 459–467. https://doi.org. 10.1016/j.tree.201 0.05.006 Pietrini, F., Iannelli, M. A., & Massacci, A. (2002). Anthocyanin accumulation in the illuminated surface of maize leaves enhances protection from photo‐inhibitory risks at low temperature, without further limitation to photosynthesis. Plant, Cell & Environment, 25(10), 1251–1259. https://doi.org.10.1046/j.1365-3040.2002. 00917.x Pietsch, K. A., Ogle, K., Cornelissen, J. H., Cornwell, W. K., Bönisch, G., Craine, J. M., ... & Wirth, C. (2014). Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Global Ecology and Biogeography, 23(9), 1046–1057. https://doi.org.10.1111/geb.12172 Pigliucci, M. (2005). Evolution of phenotypic plasticity: where are we going now? Trends in Ecology & Evolution, 20(9), 481–486. https://doi.org.10.1016/j.tree. 2005.06.001 Pluess, A. R., Frei, E., Kettle, C. J., Hahn, T., & Ghazoul, J. (2011). Plant growth and fitness of Scabiosa columbaria under climate warming conditions. Plant Ecology & Diversity, 4(4), 379–389. https://doi.org.10.1080/17550874.2011.618848 Poorter, H., & Nagel, O. (2000). The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Functional Plant Biology, 27(12), 1191–1191. https://doi.org.10.1071/PP99173_CO Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta‐analysis. New Phytologist, 182(3), 565–588. https://doi.org.10.1111/j.1469-8137.2009.02830.x Poorter, L. (2007). Are species adapted to their regeneration niche, adult niche, or both? The American Naturalist, 169(4), 433–442. https://doi.org.10.1086/512045 Promkhambut, A., Younger, A., Polthanee, A., & Akkasaeng, C. (2010). Morphological and physiological responses of sorghum (Sorghum bicolor L. Moench) to waterlogging. Asian Journal of Plant Sciences, 9(4), 183. https://doi.org.10.3923/ ajps.20 10.183.193 R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ Raabová, J., Münzbergová, Z., & Fischer, M. (2007). Ecological rather than geographic or genetic distance affects local adaptation of the rare perennial herb, Aster amellus. Biological Conservation, 139(3), 348–357. https://doi.org.10.1016/j.biocon.200 7.07.007 Ranal, M., & García. D. (2006). How and why to measure the germination process? Brazilian Journal of Botany, 29, 1–11. https://doi.org.10.1590/S0100-84042006000100002 Ranal, M., Santana, D. G. D., Ferreira, W. R. & Mendes-Rodrigues, C. (2009). Calculating germination measurements and organizing spreadsheets. Brazilian Journal of Botany, 32(4): 849–855. https://doi.org.10.1590/S0100-84042009000 400022 Read, Q. D., Moorhead, L. C., Swenson, N. G., Bailey, J. K., & Sanders, N. J. (2014). Convergent effects of elevation on functional leaf traits within and among species. Functional Ecology, 28(1), 37–45. https://doi.org.10.1111/1365-2435.12162 Reich, P. B., Wright, I. J., Cavender-Bares, J., Craine, J. M., Oleksyn, J., Westoby, M., & Walters, M. B. (2003). The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences, 164(S3), S143–S164. https://doi.org.10.1086/374368 Riginos, C., Heschel, M. S., & Schmitt, J. (2007). Maternal effects of drought stress and inbreeding in Impatiens capensis (Balsaminaceae). American Journal of Botany, 94(12), 1984–1991. https://doi.org.10.3732/ajb.94.12.1984 Roach, D. A., & Wulff, R. D. (1987). Maternal effects in plants. Annual Review of Ecology and Systematics, 18(1), 209–235. https://doi.org.10.1146/annurev.es.18.110187. 001233 Rossiter, M. (1996). Incidence and consequences of inherited environmental effects. Annual Review of Ecology and Systematics, 27(1), 451–476. https://doi.org.10.1146 /annurev.ecolsys.27.1.451 Ryser, P., & Urbas, P. (2000). Ecological significance of leaf life span among Central European grass species. Oikos, 91(1), 41–50. https://doi.org.10.1034/j.1600-0706.2000.910104.x Satyanti, A., Guja, L. K., & Nicotra, A. B. (2019). Temperature variability drives within-species variation in germination strategy and establishment characteristics of an alpine herb. Oecologia, 189(2), 407–419. https://doi.org.10.1007/s00442-018-04328-2 Scheepens, J. F., Frei, E. S., & Stöcklin, J. (2010). Genotypic and environmental variation in specific leaf area in a widespread Alpine plant after transplantation to different altitudes. Oecologia, 164(1), 141–150. https://doi.org.10.1007/s00442-010-1650-0 Schlichting, C. D., & Levin, D. A. (1986). Phenotypic plasticity: an evolving plant character. Biological Journal of the Linnean Society, 29(1), 37–47. https://doi.org.10.1111/j. 1095-8312.1986.tb01769.x Schluter, D., Price, T. D., & Rowe, L. (1991). Conflicting selection pressures and life history trade-offs. Proceedings of the Royal Society of London. Series B: Biological Sciences, 246, 11–17. https://doi.org.10.1098/rspb.1991.0118 Schmid, B., & Bazzaz, F. A. (1994). Crown construction, leaf dynamics, and carbon gain in two perennials with contrasting architecture. Ecological Monographs, 64(2), 177–203. https://doi.org.10.2307/2937040 Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org.10.1038/nmeth. 2089 Sexton, J. P., Strauss, S. Y., & Rice, K. J. (2011). Gene flow increases fitness at the warm edge of a species’ range. Proceedings of the National Academy of Sciences, 108(28), 11704–11709. https://doi.org.10.1073/pnas.1100404108 Steyn, W. J., Wand, S. J. E., Holcroft, D. M., & Jacobs, G. J. N. P. (2002). Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytologist, 155(3), 349–361. doi.: 10.1046/j.1469-8137.2002.00482.x Sultan, S. E. (1996). Phenotypic plasticity for offspring traits in Polygonum persicaria. Ecology, 77(6), 1791–1807. https://doi.org.10.2307/2265784 Sultan, S. E. (2000). Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 5(12), 537–542. https://doi.org.10.1016/S1360-1385(00)01797-0 Swift, J. F., Smith, S. A., Menges, E. S., Bassüner, B., & Edwards, C. E. (2016). Analysis of mating system and genetic structure in the endangered, amphicarpic plant, Lewton’s polygala (Polygala lewtonii). Conservation Genetics, 17, 1269–1284. https://doi.org.10.1007/s10592-016-0860-3 Sytar, O., Zivcak, M., Bruckova, K., Brestic, M., Hemmerich, I., Rauh, C., & Simko, I. (2018). Shift in accumulation of flavonoids and phenolic acids in lettuce attributable to changes in ultraviolet radiation and temperature. Scientia Horticulturae, 239, 193–204. https://doi.org.10.1016/j.scienta.2018.05.020. Therneau T. & Grambsch P. (2000). Modeling Survival Data: Extending the Cox Model. Springer Publishers. Therneau T. (2022). A Package for Survival Analysis in R. R package version 3.3-1. https://CRAN.R-project.org/package=survival Tian, L.-X., Zhang, Y.-C., Chen, P.-L., Zhang, F.-F., Li, J., Yan, F., ... & Feng, B.-L. (2021). How does the waterlogging regime affect crop yield? A global meta-analysis. Frontiers in Plant Science, 12, 634898. https://doi.org.10.3389/fpls.2021.634898 Tilman, D. (1985). The resource-ratio hypothesis of plant succession. The American Naturalist, 125(6), 827–852. https://doi.org.10.1086/284382 Valladares, F., Wright, S. J., Lasso, E., Kitajima, K., & Pearcy, R. W. (2000). Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology, 81(7), 1925–1936. https://doi.org.10.1890/0012-9658(2000)081 [1925: PPRTLO]2.0. CO;2 Vandenbussche, F., Pierik, R., Millenaar, F. F., Voesenek, L. A., & Van Der Straeten, D. (2005). Reaching out of the shade. Current Opinion in Plant Biology, 8(5), 462–468. https://doi.org.10.1016/j.pbi.2005.07.007 Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007). Let the concept of trait be functional! Oikos, 116(5), 882–892. https://doi.org.10.1111/j.0030-1299.2007.15559.x Walck, J. L., Hidayati, S. N., Dixon, K. W., Thompson, K. E. N., & Poschlod, P. (2011). Climate change and plant regeneration from seed. Global Change Biology, 17(6), 2145–2161. https://doi.org.10.1111/j.1365-2486.2010.02368.x Wang, H., Gao, J., Kou, J., Zhu, D., & Yu, B. (2008). Anti-inflammatory activities of triterpenoid saponins from Polygala japonica. Phytomedicine, 15(5), 321–326. https://doi.org.10.1016/j.phymed.2007.09.014 Weiher, E., Van Der Werf, A., Thompson, K., Roderick, M., Garnier, E., & Eriksson, O. (1999). Challenging Theophrastus: a common core list of plant traits for functional ecology. Journal of Vegetation Science, 10(5), 609–620. https://doi.org.10.2307/ 3237076 Westoby, M., & Wright, I. J. (2006). Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution, 21(5), 261–268. https://doi.org.10.1016/j.tree. 2006.02.004 Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag Publishers. Williams, D. G., Mack, R. N., & Black, R. A. (1995). Ecophysiology of introduced Pennisetum setaceum on Hawaii: the role of phenotypic plasticity. Ecology, 76(5), 1569–1580. https://doi.org.10.2307/1938158 Wolf, J. B., & Wade, M. J. (2009). What are maternal effects (and what are they not)? Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1520), 1107–1115. https://doi.org.10.1098/rstb.2008.0238 Wright, I. J., & Westoby, M. (2002). Leaves at low versus high rainfall: coordination of structure, lifespan and physiology. New Phytologist, 155(3), 403–416. https://doi.org.10.1046 / j.1469-8137.2002.00479.x Wright, I. J., Ackerly, D. D., Bongers, F., Harms, K. E., Ibarra-Manriquez, G., Martinez-Ramos, M., ... & Wright, S. J. (2007). Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Annals of Botany, 99(5), 1003–1015. https://doi.org.10.1093/aob/mcl066 Wright, I. J., Dong, N., Maire, V., Prentice, I. C., Westoby, M., Díaz, S., ... & Wilf, P. (2017). Global climatic drivers of leaf size. Science, 357, 917–921. https://doi.org.10.1126/science.aal4760 Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., ... & Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428, 821–827. https://doi.org.10.1038/nature02403 Yang, A.-T., & Chen, C.-F. (2013). A revision of the genus Polygala L. (Polygalaceae) in Taiwan. Taiwania, 58(3), 156–162. https://doi.org.10.6165/tai.2013.58.156 Younginger, B. S., Sirová, D., Cruzan, M. B., & Ballhorn, D. J. (2017). Is biomass a reliable estimate of plant fitness? Applications in Plant Sciences, 5(2), 1600094. https://doi.org.10.3732/apps.1600094 Zhou, W., Zhao, D., & Lin, X. (1997). Effects of waterlogging on nitrogen accumulation and alleviation of waterlogging damage by application of nitrogen fertilizer and mixtalol in winter rape (Brassica napus L.). Journal of Plant Growth Regulation, 16(1), 47–53. https://doi.org.10.1007/PL00006974 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93097 | - |
dc.description.abstract | 海拔梯度所形成的異質生態環境形成自然選擇的差異,促使物種跨海拔分布,表現較大的表型變異以適應不同環境。表型特徵受環境與基因型及其交互作用所影響,在不同環境中會因遺傳因子或表型可塑性等機制使表型發生變化。本研究以廣泛分布於台灣各海拔的瓜子金 (Polygala japonica Houtt.)為材料,該物種在不同海拔間呈現明顯的形態差異。透過收集各海拔與不同棲地共12個族群的種子,進行低海拔與高海拔地區的共園實驗與移地互換實驗。利用R統計軟體分析比較了各族群於原生地及試驗地的功能性狀變化、發芽表現與存活情況,以確認表型可塑性及在地適應對各海拔族群的影響程度,進一步了解瓜子金廣泛分布各海拔的原因與其生態策略。
研究結果顯示,瓜子金於原生地棲地環境相當多元,並呈現明顯的種內變異,並具有改變性狀適應當地環境的能力。該物種具較長的葉片壽命與發達的根系,多項性狀特徵受到表型可塑性與遺傳因素的共同影響,儘管遺傳因子影響尚待釐清,但兩處試驗地的環境差異對部分性狀仍具一定影響,並表現出不同的生態策略。在早期與後期生命史階段,瓜子金能根據環境變化調整性狀,進一步證明其適應不同環境的潛力,也解釋了該物種能在廣泛的海拔範圍內分布的原因。 | zh_TW |
dc.description.abstract | Heigh heterogeneous environments formed by altitude gradient lead to differences in natural selection, prompting species to distribute across altitudes, exhibiting significant phenotypic variations to adapt to different environments. Phenotype is the traits affected by environment, genotype and interaction, and will respond to different environments due to mechanisms such as genetic factors or phenotypic plasticity.
Polygala japonica Houtt. is a widely distributed perennial herb that has different morphological traits with different altitudes in Taiwan. We collected seeds from 12 populations with different altitudes and habitats, conducted in reciprocal transplant experiments at the low and high altitudes sites. We measured the functional traits, germination percentage and survival analysis in different populations, and all data analyzed within the R environment. In this study, we try to elucidate the effect of phenotypic plasticity and local adaptation, the ecological strategy with different altitudes in Polygala japonica. Our results showed that native habitat diversity and significant intraspecific variation of P. japonica has the ability to change traits to adapt the environmental conditions. The species has longer leaf lifespans and well-developed tap root, and other trait characteristics effected by both phenotypic plasticity and genetic factors. Though the impact of genetic factors still unknown, the environmental differences between the two experimental sites have certain effects on some traits, demonstrating different ecological strategies. On early and later life history stages, P. japonica can change traits according to environments, which further demonstrates its potential to adapt to different environments and explains why this species can be distributed in a wide altitude range. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-17T16:24:08Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-17T16:24:08Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 摘要 i
Abstract ii 目次 iv 圖次 v 表次 vi 第一章、前言 1 第二章、材料與方法 5 2.1 研究物種與材料 5 2.2 移地互換實驗 9 2.3 表型測量 12 2.4 數據分析 14 第三章、結果 18 3.1. 植物性狀比較 20 3.2 葉片壽命比較 39 3.3 發芽觀察與紀錄 41 3.4 存活分析 44 3.5 原生地各族群環境因子之主成分分析 51 第四章、討論 54 4.1 瓜子金在原生地的種內變異與環境關係 54 4.2 表型可塑性與在地適應表現 60 4.3 種子發芽與發芽後存活表現 67 第五章、結論與未來研究方向 71 參考文獻 72 附錄 88 | - |
dc.language.iso | zh_TW | - |
dc.title | 瓜子金於不同海拔之表型可塑性與在地適應表現 | zh_TW |
dc.title | Phenotypic plasticity and local adaptation in Polygala japonica in response to different altitudes | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林政道;林奐宇 | zh_TW |
dc.contributor.oralexamcommittee | Cheng-Tao Lin;Huan-Yu Lin | en |
dc.subject.keyword | 在地適應,表型可塑性,種內變異,功能性狀,移地互換實驗,存活分析,瓜子金, | zh_TW |
dc.subject.keyword | local adaptation,phenotypic plasticity,intraspecific variation,functional traits,reciprocal transplant experiment,survival analysis,Polygala japonica, | en |
dc.relation.page | 90 | - |
dc.identifier.doi | 10.6342/NTU202401514 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-07-05 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 生態學與演化生物學研究所 | - |
dc.date.embargo-lift | 2029-07-04 | - |
顯示於系所單位: | 生態學與演化生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 4 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。