請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9307完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑 | |
| dc.contributor.author | Li-Ping Tseng | en |
| dc.contributor.author | 曾莉萍 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:16:53Z | - |
| dc.date.available | 2021-05-20T20:16:53Z | - |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-03 | |
| dc.identifier.citation | 1. Alexander DJ. Newcastle disease and other Paramyxoviridae infections. Iowa State University Press 1997:541-569.
2. Lage M, Catelli, G., Rampin, T., Mandelli, G. Comparative remarks on the pathogenicity of a velogenic strain of NDV towards five species of gallifiormes. Atti della Societa Italian delle Scienze Veterinaire 1974;28:746-750. 3. Muller H, Nostitz, D., Gurk, W. Zur. Klinik und Pathologie der Newcastle Disease bei Fasanen (Phaisnus colchicus). Monatshefte fur Veterinarmedizin 1990;45:467-469. 4. Bang BG, Bang FB. Localized lymphoid tissues and plasma cells in paraocular and paranasal organ systems in chickens. Am J Pathol 1968;53(5):735-751. 5. Jeurissen SH, Janse EM, Koch G, De Boer GF. Postnatal development of mucosa-associated lymphoid tissues in chickens. Cell Tissue Res 1989; 258(1):119-124. 6. Fagerland JA, Arp LH. A morphologic study of bronchus-associated lymphoid tissue in turkeys. Am J Anat 1990;189(1):24-34. 7. Jeurissen S, Vervelde L, Janse EM. Structure and function of lymphoid tissues of the chicken. Poultr Sci Rev 1994;5:183-207. 8. Glick B, Olah I. Gut-associated-lymphoid tissue of the chicken. Scan Electron Microsc 1981(Pt 3):99-108. 9. Befus AD, Johnston N, Leslie GA, Bienenstock J. Gut-associated lymphoid tissue in the chicken. I. Morphology, ontogeny, and some functional characteristics of Peyer's patches. J Immunol 1980;125(6):2626-2632. 10. Montgomery RD, Maslin WR, Magee DL, Boyle CR. Effects of modified-live infectious bronchitis virus vaccines on the head-associated lymphoid tissue (HALT). Avian Dis 1994;38(4):847-856. 11. Bienenstock J, Befus, D. Gut- and bronchusassociated lymphoid tissue. Am J Anat 1984;170:437-445. 12. Fagerland JA, Arp LH. Structure and development of bronchus-associated lymphoid tissue in conventionally reared broiler chickens. Avian Dis 1993;37(1):10-18. 13. Fagerland JA, Arp LH. Distribution and quantitation of plasma cells, T lymphocyte subsets, and B lymphocytes in bronchus-associated lymphoid tissue of chickens: age-related differences. Reg Immunol 1993;5(1):28-36. 14. van Ginkel FW, Nguyen HH, McGhee JR. Vaccines for mucosal immunity to combat emerging infectious diseases. Emerg Infect Dis 2000;6(2):123-132. 15. Vogel FR. Modulation of the Immune Response to Vaccine Antigens. . Dev Biol Stand 1998;92:241-248. 16. Kwak LW, Longo DL. Modern vaccine adjuvants. 1996:749-763. 17. Glenny AT, Pope CG, Waddington H, Wallace V. The antigenic value of toxoid precipitated by potassium-alum. J Path Bact 1926;29:38-45. 18. Eidson CS, Kleven SH. A comparison of various routes of Newcastle disease vaccination at one day of age. Poultry Sci 1976;55:1778-1787. 19. Ewert DL, Barger BO, Eidson CS. Local antibody response in chickens: analysis of antibody synthesis to Newcastle disease virus by solid-phase radioimmunoassay and immunofluorescence with class-specific antibody for chicken immunoglobulins. Infect Immun 1979;24(1):269-275. 20. Beard CW, Easterday BC. The influence of the route of administration of Newcastle disease virus on host response. I. Serological and virus isolation studies. J Infect Dis 1967;117(1):55-61. 21. Banda A, Villegas P, Purvis LB, Perozo F. Protection conferred by coarse spray vaccination against challenge with infectious bursal disease virus in commercial broilers. Avian Dis 2008;52(2):297-301. 22. Rodriguez-Avila A, Oldoni I, Riblet S, Garcia M. Evaluation of the protection elicited by direct and indirect exposure to live attenuated infectious laryngotracheitis virus vaccines against a recent challenge strain from the United States. Avian Pathol 2008;37(3):287-292. 23. Devlin JM, Browning GF, Gilkerson JR, Fenton SP, Hartley CA. Comparison of the safety and protective efficacy of vaccination with glycoprotein-G-deficient infectious laryngotracheitis virus delivered via eye-drop, drinking water or aerosol. Avian Pathol 2008;37(1):83-88. 24. Thornton DH. Quality control of vaccines. In: Alexander DJ, editor. Newcastle Disease. London, 1988. 25. Yoshida I, Oka M, Shimizu F, Yuasa N, Tsubahara H. Neutralizing antibody in the respiratory tract of chickens inoculated with Newcastle disease vaccines. Natl Inst Anim Health Q (Tokyo) 1971 Summer;11(2):75-82. 26. OIE Terrestrial Manual 2008. Chapter 1.1.8. - Principles of veterinary vaccine production. pp.90-104. 27. Vogel FR. Adjuvants in perspective. In: Brown F, Haaheim LR, editors. Modulation of the immune response to vaccine antigens. Dev. Biol. Stand. Basel: Karger. 1998; 92: 241–8. 28. Kwak, L.W. and Longo, D.L. (1996) Modern vaccine adjuvants. In Cancer Chemotherapy and Biotherapy (Chabner, B.A. and Longo, D.L., eds), pp. 749–763. 29. Tritto E, Mosca F, De Gregorio E. Mechanism of action of licensed vaccine adjuvants. Vaccine 2009;27(25-26):3331-3334. 30. Vogel FR, Powell MF. A summary compendium of vaccine adjuvants and excipients. In: Powell MF, Newman MJ, editors. Vaccine design: the subunit and adjuvant approach. New York, 1995. pp. 234-250. 31. Edelman R. Vaccine adjuvants. Rev Infect Dis 1980;2(3):370-383. 32. Nicholson KG, Colegate AE, Podda A, Stephenson I, Wood J, Ypma E. Confronting a potential H5N1 pandemic: a randomised controlled trial of conventional and MF59 adjuvanted influenza A/Duck/Singapore997 (H5N3) surface antigen vaccine. Lancet 2001;357:1937-1943 33. Boyce TG, Hsu HH, Sannella EC, Coleman-Dockery SD, Baylis E, Zhu Y, et al. Safety and immunogenicity of adjuvanted and unadjuvanted subunit influenza vaccines administered intranasally to healthy adults. Vaccine 2000;19(2-3):217-226. 34. Aguado T, Engers H, Pang T, Pink R. Novel adjuvants currently in clinical testing November 2-4, 1998, Fondation Merieux, Annecy, France: a meeting sponsored by the World Health Organization. Vaccine 1999;17(19):2321-2328. 35. Nigou J, Vasselon T, Ray A, Constant P, Gilleron M, Besra GS, et al. Mannan chain length controls lipoglycans signaling via and binding to TLR2. J Immunol 2008;180(10):6696-6702. 36. Salem ML, Kadima AN, Cole DJ, Gillanders WE. Defining the antigen-specific T-cell response to vaccination and poly(I:C)/TLR3 signaling: evidence of enhanced primary and memory CD8 T-cell responses and antitumor immunity. J Immunother 2005;28(3):220-228. 37. Baldridge JR, McGowan P, Evans JT, Cluff C, Mossman S, Johnson D, et al. Taking a Toll on human disease: Toll-like receptor 4 agonists as vaccine adjuvants and monotherapeutic agents. Expert Opin Biol Ther 2004;4(7):1129-1138. 38. Huleatt JW, Jacobs AR, Tang J, Desai P, Kopp EB, Huang Y, et al. Vaccination with recombinant fusion proteins incorporating Toll-like receptor ligands induces rapid cellular and humoral immunity. Vaccine 2007;25(4):763-775. 39. Stockfleth E, Trefzer U, Garcia-Bartels C, Wegner T, Schmook T, Sterry W. The use of Toll-like receptor-7 agonist in the treatment of basal cell carcinoma: an overview. Br J Dermatol 2003;149 Suppl 66:53-56. 40. Weeratna RD, Makinen SR, McCluskie MJ, Davis HL. TLR agonists as vaccine adjuvants: comparison of CpG ODN and Resiquimod (R-848). Vaccine 2005;23(45):5263-5270. 41. Heufler C, Koch F, Schuler G. Granulocyte/macrophage colony-stimulating factor and interleukin 1 mediate the maturation of murine epidermal Langerhans cells into potent immunostimulatory dendritic cells. J Exp Med 1988;167(2):700-705. 42. Lynch JM, Briles DE, Metzger DW. Increased protection against pneumococcal disease by mucosal administration of conjugate vaccine plus interleukin-12. Infect Immun 2003;71(8):4780-4788. 44. Woodard LF, Jasman RL. Stable oil-in-water emulsions: preparation and use as vaccine vehicles for lipophilic adjuvants. Vaccine 1985;3(2):137-144. 45. Kimura J, Nariuchi H, Watanabe T, Matuhasi T, Okayasu I, Hatakeyama S. Studies on the adjuvant effect of water-in-oil-in-water (w/o/w) emulsion of sesame oil. 1. Enhanced and persistent antibody formation by antigen incorporated into the water-in-oil-in-water emulsion. Jpn J Exp Med 1978;48(2):149-154. 46. Butler NR, Voyce MA, Burland WL, Hilton ML. Advantages of aluminium hydroxide adsorbed combined diphtheria, tetanus, and pertussis vaccines for the immunization of infants. Br Med J 1969;1(5645):663-666. 47. Singh M, Kazzaz J, Ugozzoli M, Malyala P, Chesko J, O'Hagan DT. Polylactide-co-glycolide microparticles with surface adsorbed antigens as vaccine delivery systems. Curr Drug Deliv 2006;3(1):115-120. 48. Taneichi M, Ishida H, Kajino K, Ogasawara K, Tanaka Y, Kasai M, et al. Antigen chemically coupled to the surface of liposomes are cross-presented to CD8+ T cells and induce potent antitumor immunity. J Immunol 2006;177(4):2324-2330. 49. Pearse MJ, Drane D. ISCOMATRIX adjuvant for antigen delivery. Adv Drug Deliv Rev 2005;57(3):465-474. 50. Kundig TM, Senti G, Schnetzler G, Wolf C, Prinz Vavricka BM, Fulurija A, et al. Der p 1 peptide on virus-like particles is safe and highly immunogenic in healthy adults. J Allergy Clin Immunol 2006;117(6):1470-1476. 51. Zinkernagel RM, Ehl S, Aichele P, Oehen S, Kundig T, Hengartner H. Antigen localisation regulates immune responses in a dose- and time-dependent fashion: a geographical view of immune reactivity. Immunol Rev;156:199-209. 52. Janeway CA, Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 1989;54 Pt 1:1-13. 53. Matzinger P. The danger model: a renewed sense of self. Science 2002;296(5566):301-305. 54. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994;12:991-1045. 55. Storni T, Kundig TM, Senti G, Johansen P. Immunity in response to particulate antigen-delivery systems. Adv Drug Deliv Rev 2005;57(3):333-355. 56. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965;13(1):238-252. 57. Sessa G, Weissmann G. Phospholipid spherules (liposomes) as a model for biological membranes. J Lipid Res 1968;9(3):310-318. 58. Weinstein JN, Leserman LD. Liposomes as drug carriers in cancer chemotherapy. Pharmacol Ther 1984;24(2):207-233. 59. Gregoriadis G. Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol 1995;13(12):527-537. 60. Gregory RL, Michalek SM, Richardson G, Harmon C, Hilton T, McGhee JR. Characterization of immune response to oral administration of Streptococcus sobrinus ribosomal preparations in liposomes. Infect Immun 1986;54(3):780-786. 61. Gregoriadis G. Immunological adjuvants: a role for liposomes. Immunol Today 1990;11(3):89-97. 62. Gregoriadis G. Liposomes as immunological adjuvants: approaches to immunopotentiation including ligand-mediated targeting to macrophages. Res Immunol 1992;143(2):178-185. 63. Gregoriadis G. Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol 1995;13(12):527-537. 64. Tafaghodi M, Jaafari MR, Sajadi Tabassi SA. Nasal immunization studies using liposomes loaded with tetanus toxoid and CpG-ODN. Eur J Pharm Biopharm 2006;64(2):138-145. 65. Wachsmann D, Klein JP, Scholler M, Frank RM. Local and systemic immune response to orally administered liposome-associated soluble S. mutans cell wall antigens. Immunology 1985;54(1):189-193. 66. Wachsmann D, Klein JP, Scholler M, Ogier J, Ackermans F, Frank RM. Serum and salivary antibody responses in rats orally immunized with Streptococcus mutans carbohydrate protein conjugate associated with liposomes. Infect Immun 1986;52(2):408-413. 67. Childers, N.K., and Michalek, S.M. Liposomes. In Novel Delivery Systems for Oral Vaccine Development (ed. D.T. O’Hagan); Boca Raton, Florida: CRC Press, 1994: pp. 241–254. 68. Michalek SM, Childers NK, Katz J, Dertzbaugh M, Zhang S, Russell MW, et al. Liposomes and conjugate vaccines for antigen delivery and induction of mucosal immune responses. In: J. Ciardi JK, and J.R. McGhee, editor. In Genetically Engineered Vaccines: Prospects for Oral Disease Prevention 1992. 69. Pierce NF, Sacci JB, Jr. Enhanced mucosal priming by cholera toxin and procholeragenoid with a lipoidal amine adjuvant (avridine) delivered in liposomes. Infect Immun 1984;44(2):469-473. 70. Pierce NF, Sacci JB, Jr., Alving CR, Richardson EC. Enhancement by lipid A of mucosal immunogenicity of liposome-associated cholera toxin. Rev Infect Dis 1984;6(4):563-566. 71. el Guink N, Kris RM, Goodman-Snitkoff G, Small PA, Jr., Mannino RJ. Intranasal immunization with proteoliposomes protects against influenza. Vaccine 1989;7(2):147-151. 72. de Haan A, Geerligs HJ, Huchshorn JP, van Scharrenburg GJ, Palache AM, Wilschut J. Mucosal immunoadjuvant activity of liposomes: induction of systemic IgG and secretory IgA responses in mice by intranasal immunization with an influenza subunit vaccine and coadministered liposomes. Vaccine 1995;13(2):155-162. 73. de Haan A, Renegar KB, Small PA, Jr., Wilschut J. Induction of a secretory IgA response in the murine female urogenital tract by immunization of the lungs with liposome-supplemented viral subunit antigen. Vaccine 1995;13(7):613-616. 74. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol 1997;15:323-350. 75. Bogdan C. Nitric oxide and the immune response. Nat Immunol 2001;2(10):907-916. 76. Dong C, Davis RJ, Flavell RA. MAP kinases in the immune response. Annu Rev Immunol 2002;20:55-72. 77. Johnson AG, Gaines S, Landy M. Studies on the O antigen of Salmonella typhosa. V. Enhancement of antibody response to protein antigens by the purified lipopolysaccharide. J Exp Med 1956;103(2):225-246. 78. Misaki A, Kishida E, Kakuta M, K T. Antitumor Fungal (1→3)-b -D-Glucans: Structural Diversity and Effects of Chemical Modification. London, 1993. 79. Gao Q, Seljelid R, Chen H, Jiang R. Characterisation of acidic heteroglycans from Tremella fuciformis Berk with cytokine stimulating activity. Carbohydr. Res 1996;288:135-141. 80. Gruber, J.V., 1999. Polysaccharide-based polymers in cosmetics. In: Goddard, E.D., Gruber, J.V. (Eds.), Principles of Polymer Science and Technology in Cosmetics and Personal Care. Marcel Dekker, New York, pp. 325–389. 81. Seal BS, King DJ, Sellers HS. The avian response to Newcastle disease virus. Dev Comp Immunol 2000;24(2-3):257-268. 82. Singh M, Ott G, Kazzaz J, Ugozzoli M, Briones M, Donnelly J, et al. Cationic microparticles are an effective delivery system for immune stimulatory CpG DNA. Pharm Res 2001;18(10):1476-1479. 83. Kanke M, Sniecinski I, DeLuca PP. Interaction of microspheres with blood constituents: I. Uptake of polystyrene spheres by monocytes and granulocytes and effect on immune responsiveness of lymphocytes. J Parenter Sci Technol 1983;37(6):210-217. 84. Tabata Y, Ikada Y. Macrophage phagocytosis of biodegradable microspheres composed of L-lactic acid/glycolic acid homo- and copolymers. J Biomed Mater Res 1988;22(10):837-858. 85. Mazumdar T, Anam K, Ali N. Influence of phospholipid composition on the adjuvanticity and protective efficacy of liposome-encapsulated Leishmania donovani antigens. J Parasitol 2005;91(2):269-274. 86. Aramaki Y, Akiyama K, Hara T, Tsuchiya S. Recognition of charged liposomes by rat peritoneal and splenic macrophages: effects of fibronectin on the uptake of charged liposomes European Journal of Pharmaceutical Sciences 1995;3:63-70. 87. Nakanishi T, Kunisawa J, Hayashi A, Tsutsumi Y, Kubo K, Nakagawa S, et al. Positively charged liposome functions as an efficient immunoadjuvant in inducing immune responses to soluble proteins. Biochem Biophys Res Commun 1997;240(3):793-797. 88. Yotsumoto S, Kakiuchi T, Aramaki Y. Enhancement of IFN-gamma production for Th1-cell therapy using negatively charged liposomes containing phosphatidylserine. Vaccine 2007;25(29):5256-5262. 89. Friedman A, Weiner HL. Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc Natl Acad Sci USA 1994;91(14):6688-6692. 90. Richman LK, Chiller JM, Brown WR, Hanson DG, Vaz NM. Enterically induced immunologic tolerance. I. Induction of suppressor T lymphoyctes by intragastric administration of soluble proteins. J Immunol 1978;121(6):2429-2434. 91. Miller SD, Hanson DG. Inhibition of specific immune responses by feeding protein antigens. IV. Evidence for tolerance and specific active suppression of cell-mediated immune responses to ovalbumin. J Immunol 1979;123(5):2344-2350. 92. MacDonald TT. Immunosuppression caused by antigen feeding. I. Evidence for the activation of a feedback suppressor pathway in the spleens of antigen-fed mice. Eur J Immunol 1982;12(9):767-773. 93. Whitacre CC, Gienapp IE, Orosz CG, Bitar DM. Oral tolerance in experimental autoimmune encephalomyelitis. III. Evidence for clonal anergy. J Immunol 1991;147(7):2155-2163. 94. Melamed D, Friedman A. Direct evidence for anergy in T lymphocytes tolerized by oral administration of ovalbumin. Eur J Immunol 1993;23(4):935-942. 95. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 1992;148(7):2207-2216. 96. Henry F, Boisteau O, Bretaudeau L, Lieubeau B, Meflah K, Gregoire M. Antigen-presenting cells that phagocytose apoptotic tumor-derived cells are potent tumor vaccines. Cancer Res 1999;59(14):3329-3332. 97. Masse D, Voisine C, Henry F, Cordel S, Barbieux I, Josien R, et al. Increased vaccination efficiency with apoptotic cells by silica-induced, dendritic-like cells. Cancer Res 2002;62(4):1050-1056. 98. Stach CM, Turnay X, Voll RE, Kern PM, Kolowos W, Beyer TD, et al. Treatment with annexin V increases immunogenicity of apoptotic human T-cells in Balb/c mice. Cell Death Differ 2000;7(10):911-915. 99. Antimisiaris SG, Jayasekera P, Gregoriadis G. Liposomes as vaccine carriers. Incorporation of soluble and particulate antigens in giant vesicles. J Immunol Methods 1993;166(2):271-280. 100. Moghimi SM, Patel HM. Tissue specific opsonins for phagocytic cells and their different affinity for cholesterol-rich liposomes. FEBS Lett 1988;233(1):143-147. 101. Davis D, Gregoriadis G. Primary immune response to liposomal tetanus toxoid in mice: the effect of mediators. Immunology 1989;68(2):277-282. 102. Bakouche O, Gerlier D. Enhancement of immunogenicity of tumour virus antigen by liposomes: the effect of lipid composition. Immunology 1986;58(3):507-513. 103. Raphael L, Tom BH. Liposome facilitated xenogeneic approach for studying human colon cancer immunity: carrier and adjuvant effect of liposomes. Clin Exp Immunol 1984;55(1):1-13. 104. del Cacho E, Gallego M, Marcotegui MA, Bascuas JA. Follicular dendritic cell activation in the harderian gland of the chicken. Vet Immunol Immunopathol 1993;35(3-4):339-351. 105. Akaki C, Simazu M, Baba T, Tsuji S, Kodama H, Mukamoto M, et al. Possible migration of harderian gland immunoglobulin A bearing lymphocytes into the caecal tonsil in chickens. Zentralbl Veterinarmed B 1997;44(4):199-206. 106. Ohta M, Nakashima I, Kato N. Adjuvant action of bacterial lipopolysaccharide in induction of delayed-type hypersensitivity to protein antigens. II. Relationships of intensity of the action to that of other immunological activities. Immunobiology 1982;163(5):460-469. 107. Mizoguchi K, Nakashima I, Hasegawa Y, Isobe K, Nagase F, Kawashima K, et al. Augmentation of antibody responses of mice to inhaled protein antigens by simultaneously inhaled bacterial lipopolysaccharides. Immunobiology 1986;173(1):63-71. 108. Ogawa T, Kotani S, Shimauchi H. Enhancement of serum antibody production in mice by oral administration of lipophilic derivatives of muramyl peptides and bacterial lipopolysaccharides with bovine serum albumin. Methods Find Exp Clin Pharmacol 1986;8(2):117-125. 109. Michalek SM, McGhee JR, Kiyono H, Colwell DE, Eldridge JH, Wannemuehler MJ, et al. The IgA response: inductive aspects, regulatory cells, and effector functions. Ann N Y Acad Sci 1983;409:48-71. 110. Ulrich JT, Cantrell, J.L., Gustafson, G.L., K.R., M., Rudbach, J.A., Hiernaux, J.R. The adjuvant activity of monophosphoryl lipid A. In Topics in Vaccine Adjuvant Research. 1991:133-143. 111. Keren DF, McDonald RA, Carey JL. Combined parenteral and oral immunization results in an enhanced mucosal immunoglobulin A response to Shigella flexneri. Infect Immun 1988;56(4):910-915. 112. Asahi-Ozaki Y, Itamura S, Ichinohe T, Strong P, Tamura S, Takahashi H, et al. Intranasal administration of adjuvant-combined recombinant influenza virus HA vaccine protects mice from the lethal H5N1 virus infection. Microbes Infect 2006;8(12-13):2706-2714. 113. Song SK, Moldoveanu Z, Nguyen HH, Kim EH, Choi KY, Kim JB, et al. Intranasal immunization with influenza virus and Korean mistletoe lectin C (KML-C) induces heterosubtypic immunity in mice. Vaccine 2007;25(34):6359-6366. 114. Ichinohe T, Kawaguchi A, Tamura S, Takahashi H, Sawa H, Ninomiya A, et al. Intranasal immunization with H5N1 vaccine plus Poly I:Poly C12U, a Toll-like receptor agonist, protects mice against homologous and heterologous virus challenge. Microbes Infect 2007;9(11):1333-1340. 115. Zhang L, Zhang M, Li J, Cao T, Tian X, Zhou F. Enhancement of mucosal immune responses by intranasal co-delivery of Newcastle disease vaccine plus CpG oligonucleotide in SPF chickens in vivo. Res Vet Sci 2008;85(3):495-502. 116. Bacon A, Makin J, Sizer PJ, Jabbal-Gill I, Hinchcliffe M, Illum L, et al. Carbohydrate biopolymers enhance antibody responses to mucosally delivered vaccine antigens. Infect Immun 2000;68(10):5764-5770. 117. Takada A, Kida H. Protective immune response of chickens against Newcastle disease, induced by the intranasal vaccination with inactivated virus. Vet Microbiol 1996;50(1-2):17-25. 118. Alving CR. Immunologic aspects of liposomes: presentation and processing of liposomal protein and phospholipid antigens. Biochim Biophys Acta 1992;1113(3-4):307-322. 119. Gonzalez-Rothi RJ, Straub L, Cacace JL, Schreier H. Liposomes and pulmonary alveolar macrophages: functional and morphologic interactions. Exp Lung Res 1991;17(4):687-705. 120. Xia EN, Cheng QH. Isolation, analysis and bioactivities of Tremella fuciformis fruit body polysaccharides. Acta Mycol Sin 1988;7:166-174. 121. Xue M, X. S. Meng. Review on research progress and prosperous of immune activities of bio-active polysaccharides. J Tradit Chin Vet Med 1996;3:15-18. 122. Lien EJ, H. Gao. Higher plant polysaccharides and their pharmacological activities. Int J Orient Med 1990;15:123. 123. Cheng FS, Hu TJ, Liang JL. Effect of 8301- polysaccharide on MD vaccine efficacy in chickens. J Tradit Chin Vet Med 1998;17:8-9. 124. Zhang LC, J. B. Wang, Y. P. Sun, D. Z. Ma, M. L. Shi, Z. H. Wang. Effect of adding Chinese herb polysaccharide preparations to a Newcastle disease inactivated vaccine on the development of the immune organs in chickens. Chin J Vet Sci 1998;18:378-381. 125. Fang BT, Y. L. Yuan, J. L. Liang. Study of mechanism of enhanced avian cholera vaccine by 8301 polysaccharide. J Tradit Chin Vet Med 1993;1:5-10. 126. Tang XM, Y. L. He, B. K. Zong. Effect of Astragalus membranacea Radix polysaccharides on T lymphocyte transformation in the peripheral blood of chickens. Chin J Vet Sci 1998;18:269-271. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9307 | - |
| dc.description.abstract | 利用微脂粒包覆活的(living)或去活的(killing)新城病毒(NDV),以點鼻(intranasal)方式接種雞隻,發現在雞隻鼻腔/氣管沖洗液與血清中都有產生特異性NDV抗體。給予雞隻接種三種不同成份的巨型多層微胞微脂粒,其中使用磷脂醯膽鹼(PC)或磷脂醯絲胺酸(PS)組成的微脂粒,在動物實驗中黏膜分泌型抗體(s-IgA)與血清抗體(IgG)及功能性抗體力價(HI titer)表現量在兩次接種後抗體均提升,攻毒後保護率也達80-90%。在微脂粒加入脂多醣體(LPS)佐劑,接種於雞隻後,在利用PC微脂粒組會增加黏膜抗體與PS微脂粒組增加會血清中抗體力價。更進一步,添加銀耳多醣(tremella)以增加微脂粒的黏度,延長微脂粒在黏膜時間,點鼻接種後黏膜分泌型抗體與血清中抗體均顯著提升,攻毒後有100%的保護率。微脂粒佐劑對於免疫細胞之機轉由共軛焦顯微鏡觀察到,PC組成份微脂粒被雞脾臟巨噬細胞胞吞量較多。PC微脂粒與PS微脂粒均活化雞脾臟巨噬細胞產生NO釋放,其中PC微脂粒NO的釋放可被Bay 11-7085抑制與U0126抑制,表示PC微脂粒在早期活化雞脾臟巨噬細胞是以NF-κB磷酸化與ERK上游的MEK磷酸化的路徑。最後我們利用獲得免疫接種微脂粒或銀耳多醣微脂粒的雞隻,發現下游的p-ERK磷酸化的現象存在,其中微脂粒p-ERK磷酸化量較多而銀耳多醣微脂粒p-ERK磷酸化量較少,p-ERK的磷酸化主要促進免疫反應走向體液免疫的Th2路徑,因此,銀耳多醣微脂粒組造成的免疫反應是完整的細胞免疫的Th1與體液免疫的Th2路徑的生成。 | zh_TW |
| dc.description.abstract | Liposomal-NDV vaccine intranasal administration to chicken can induce specific-NDV antibody at mucosal and serum. The adjuvant effect of multi-lamellar vehicles (MLVs) liposomes formulated with three phospholipids including phosphatidylcholine-liposomes (PC-Lip), phosphatidylserine-liposomes (PS-Lip), and stearylamine-liposomes (SA-Lip) was compared with that for virus alone using the inactivated Newcastle disease virus (NDV) as model antigen. PC-Lip and PS-Lip induced more NDV antibody titer after secondary immunizations. In response to virulent viral challenge, all control animals died, whereas 80~90% of animals which still survived. Added LPS with liposomal-NDV vaccine which enhanced chickens produced antibody in serum and nasal/tracheal lavages. Furthermore, we combined tremella with liposomal-NDV vaccine to enhance the muco-adhesive property and prolong liposomes on the mucosal surface. Chickens received T-PC-Lip resulted in a significant increase in HI titer also elicited a significant mucosal secretary immunoglobulin A (s-IgA) response in tracheal lavages and a serum IgG response. After virulent virus challenge, the protection rate of T-PC-Lip vaccine showed 100% survival rate. The molecular mechanism of liposomal-adjuvant was study both in vitro and in vivo. Confocal laser scan microscopy showed that PC-Lip were uptaken into chicken spleen macrophages. PC-Lip and PS-Lip stimulated chickens spleen macrophages produce NO. In response to PC-Lip stimulated, Bay 11-7085 and U0126 inhibited macrophages produced NO. PC-Lip was shown to be involved in both activation of NF-κB and upstream ERK of MEK pathway. Moreover, PC-Lip and T-PC-Lip were shown to be activated ERK pathway in vovo. In conclusion, T-PC-Lip is an active adjuvant for chickens resulting in trigger Th1 pathway of cellular immunity and Th2 pathway of humoral immunity. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:16:53Z (GMT). No. of bitstreams: 1 ntu-98-D93548009-1.pdf: 2315678 bytes, checksum: a086640eda350a6fef23484309dadb91 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員會審定書 ...................................................................................................... i
誌謝 ............................................................................................................................. ii 中文摘要 .................................................................................................................... iii 英文摘要 .................................................................................................................... iv 表目錄 .....................................................................................................................…vi 圖目錄 ....................................................................................................................... vii 第一章 緒言及文獻回顧 ............................................................................................1 1.1 黏膜免疫之介紹 ...................................................................................................1 1.2 動物用黏膜接種之疫苗.........................................................................................2 1.3 佐劑之介紹 ...........................................................................................................3 1.4 顆粒性疫苗傳輸系統 ...........................................................................................6 1.5 微脂粒佐劑 ...........................................................................................................6 1.6 脂多醣體與黏著性多醣體 .................................................................................10 1.7 雞隻黏膜感染病毒 .............................................................................................11 第二章 論文研究目的 ..............................................................................................13 第三章 材料與方法 ..................................................................................................14 3.1 實驗動物 .............................................................................................................14 3.2病毒 .......................................................................................................................14 3.3實驗試藥及分析試劑 ...........................................................................................14 3.3.1試劑藥品..............................................................................................................14 3.3.2抗體 ....................................................................................................................15 3.3.3塑膠、玻璃製品 ................................................................................................16 3. 4微脂粒包覆病毒抗原 ..........................................................................................16 3.4.1 微脂粒配方........................................................................................................16 3.4.2 製備流程 ..........................................................................................................17 3.4.3 粒徑、界面電位與包覆率 ..............................................................................17 3.4.4 相轉移溫度........................................................................................................18 3.4.5 螢光微脂粒 ......................................................................................................18 3.4.6 雙佐劑微脂粒 ..................................................................................................19 3.4.7 銀耳多醣微脂粒和三仙膠微脂粒 ..................................................................19 3.5免疫接種、採血和鼻與氣管沖洗液 ...................................................................20 3.6血球凝集抑制試驗與酵素免疫連結分析法 .......................................................21 3.7攻毒實驗 ...............................................................................................................22 3.8雞脾臟細胞分離 ...................................................................................................22 3.9共軛焦顯微鏡 .......................................................................................................22 3.10 RT-PCR偵測病毒 ..............................................................................................23 3.11材料對細胞之毒性偵測 ....................................................................................24 3.12偵測細胞培養液中NO .......................................................................................24 3.13西方點墨法偵測蛋白質表現 ............................................................................25 第四章 結果 .............................................................................................................27 第五章 討論 .............................................................................................................40 第六章 結論 .............................................................................................................48 參考文獻 ...................................................................................................................49 表 ...............................................................................................................................64 圖 ...............................................................................................................................72 發表論文列表 ...........................................................................................................93 | |
| dc.language.iso | zh-TW | |
| dc.title | 微脂粒佐劑應用於雞點鼻免疫之研究 | zh_TW |
| dc.title | The intranasal delivery study of liposomal-vaccine to SPF chickens | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李龍湖,劉得任,鍾次文,鄧明中 | |
| dc.subject.keyword | 微脂粒,佐劑,黏膜,新城病毒,一氧化氮,黏膜黏著,銀耳多醣, | zh_TW |
| dc.subject.keyword | liposome,adjuvant,mucosal,NDV,nitric oxide,mucoadhesive,Tremella, | en |
| dc.relation.page | 94 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2009-07-03 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf | 2.26 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
