Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93078
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 陳世芳 | zh_TW |
dc.contributor.advisor | Shih-Fang Chen | en |
dc.contributor.author | 蘇可欣 | zh_TW |
dc.contributor.author | Carla Kristine Macatangay Silva | en |
dc.date.accessioned | 2024-07-17T16:18:02Z | - |
dc.date.available | 2024-07-18 | - |
dc.date.copyright | 2024-07-17 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-05 | - |
dc.identifier.citation | Al-Akkam, R. M. J., & Altaei, M. S. M. (2022). Plants leaf diseases detection using deep learning. Iraqi Journal of Science, 801-816.
Alibabaei, K., Salami, S., Kianfar, K., & Kargar, R. (2022). A review of the challenges of using deep learning algorithms to support decision-making in agricultural activities. Remote Sensing, 14(3), 638. Attri, I., Sharma, V., Gupta, A., & Kumar, R. (2023). A review of deep learning techniques used in agriculture. Ecological Informatics, 102217. Aufar, Y., Rahman, A., Hamid, A., & Harahap, A. (2023). Web-based CNN application for Arabica coffee leaf disease prediction in smart agriculture. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 7(1), 71-79. Aufar, Y., & Kaloka, T. P. (2022). Robusta coffee leaf diseases detection based on MobileNetV2 model. International Journal of Electrical and Computer Engineering, 12(6), 6675-6680. Barbedo, J. G. A. (2016). A new automatic method for disease symptom segmentation in digital photographs of plant leaves. European Journal of Plant Pathology, 147(2), 349-364. Barbedo, J. G. A., Koenigkan, L. V., & Santos, J. M. (2018). Annotated plant pathology databases for image-based detection and recognition of diseases. IEEE Latin America Transactions, 16(6), 1749-1757. Boa Sorte, L. X., Batista, B. L., & Salles, L. F. (2019). Coffee leaf disease recognition based on deep learning and texture attributes. Procedia Computer Science, 159, 135-144. Boukhris, L., Bouzidi, S., & Arab, A. (2020). Tailored deep learning-based architecture for smart agriculture. In 2020 International Wireless Communications and Mobile Computing (IWCMC) (pp. 439-444). IEEE. Butera, L., Ponce, C., & Herrera, R. (2022). Precise agriculture: Effective deep learning strategies to detect pest insects. IEEE/CAA Journal of Automatica Sinica, 9(2), 246-258. Cerda, R., Avelino, J., & Saenz, R. (2017). Primary and secondary yield losses caused by pests and diseases: Assessment and modeling in coffee. PloS One, 12(1), e0169133. Chavarro, A. F., Bermúdez, J. D., & Álvarez, E. M. (2023). Influence of hyperparameters in deep learning models for coffee rust detection. Applied Sciences, 13(7), 4565. Chen, S. (2020). Detection of tea plant diseases using machine vision technology. Journal of Plant Pathology, 102(4), 765-774. Corrales, D. C., Gonzalez, M. A., & Restrepo, S. (2015). An empirical multi-classifier for coffee rust detection in Colombian crops. In Computational Science and Its Applications – ICCSA 2015 (pp. 567-581). Springer International Publishing. Delnevo, G., Ferrando, A., & Gatti, E. (2021). A deep learning and social IoT approach for plants disease prediction toward a sustainable agriculture. IEEE Internet of Things Journal, 9(10), 7243-7250. Derwin, Suhartono, W. A., & Sutrisno, A. (2013). Expert system in detecting coffee plant diseases. International Journal of Electrical Energy, 1(3), 156-162. Dhanya, V. G., Manimegalai, D., & Padmavathy, S. (2022). Deep learning-based computer vision approaches for smart agricultural applications. Artificial Intelligence in Agriculture, 6, 211-229. Dokic, K., & Nestic, S. (2020). From machine learning to deep learning in agriculture – The quantitative review of trends. In IOP Conference Series: Earth and Environmental Science (Vol. 614, p. 012008). IOP Publishing. Dutta, L., & Rana, A. K. (2021). Disease detection using transfer learning in coffee plants. In 2021 2nd Global Conference for Advancement in Technology (GCAT) (pp. 1-4). IEEE. Esgario, J. G., Krohling, R. A., & Ventura, J. A. (2020). Deep learning for classification and severity estimation of coffee leaf biotic stress. Computers and Electronics in Agriculture, 169, 105162. Esgario, J. G. M., Krohling, R. A., & Ventura, J. A. (2022). An app to assist farmers in identifying diseases and pests of coffee leaves using deep learning. Information Processing in Agriculture, 9(1), 38-47. Essoh, S. L. E., Aliou, M., & Kevin, O. (2022). Detection and classification of coffee plant diseases by image processing and machine learning. In Springer International Publishing (pp. 101-112). Springer. Fatih, B. A. L., & Kayaalp, F. (2021). Review of machine learning and deep learning models in agriculture. International Advanced Researches and Engineering Journal, 5(2), 309-323. Fiehn, H. B., Müller, H., & Selinger, D. (2018). Smart agriculture system based on deep learning. In Proceedings of the 2nd International Conference on Smart Digital Environment (pp. 158-165). Association for Computing Machinery. Francis, M., & Deisy, C. (2021). Mathematical and visual understanding of a deep learning model towards m-agriculture for disease diagnosis. Archives of Computational Methods in Engineering, 28(3), 1129-1145. Geddam, L. S., Patil, S. R., & Naidu, V. R. (2023). Detection of white stem borer disease in coffee plantation using autonomous multi-terrain robot. In 2023 19th IEEE International Colloquium on Signal Processing & Its Applications (CSPA) (pp. 1-6). IEEE. Habaradas, R. B. (2021). Challenges in the Philippine coffee industry. Philippine Journal of Development, 48(2), 123-135. Hasan, R. I., Naim, A. H., & Arshad, S. A. (2020). Review of the state of the art of deep learning for plant diseases: A broad analysis and discussion. Plants, 9(10), 1231. Hasan, R. I., Nawaz, A., Arshad, S. A., & Naqvi, M. (2023). Automatic clustering and classification of coffee leaf diseases based on an extended kernel density estimation approach. Plants, 12(8), 1603. Hitimana, E., & Gwun, O. (2014). Automatic estimation of live coffee leaf infection based on image processing techniques. arXiv preprint arXiv:1402.5805. Ibrahim, M., Olubayo, F., Sunde, E., & Kimenju, J. (2016). Management of Phoma leaf spot of coffee in Kenya. Journal of Agricultural Science, 8(6), 71-78. International Coffee Organization. (2020). Coffee market report. Retrieved from https://www.ico.org/documents/cy2020-21/cmr-0920-e.pdf Javierto, D. P. P., Alquiza, A., Cruz, J. M. D., & Montalbo, F. J. P. (2021). Robusta coffee leaf detection based on YOLOv3-MobileNetv2 model. In 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM) (pp. 1-6). IEEE. Jepkoech, J., Cheruiyot, K., Kipruto, K., & Juma, F. (2021). Arabica coffee leaf images dataset for coffee leaf disease detection and classification. Data in Brief, 36, 107142. Karar, M. E., El-Henawy, I. M., & Awad, A. I. (2021). A new mobile application of agricultural pests recognition using deep learning in cloud computing system. Alexandria Engineering Journal, 60(5), 4423-4432. Khan, S., Rehman, S. U., & Haq, A. U. (2021). Deep learning-based identification system of weeds and crops in strawberry and pea fields for a precision agriculture sprayer. Precision Agriculture, 22(6), 1711-1727. Khan, M. A. (2022). Apple disease detection using machine learning. Computers and Electronics in Agriculture, 191, 106516. Khirade, S. D., & Patil, A. (2015). Plant disease detection using image processing. In 2015 International Conference on Computing Communication Control and Automation (pp. 768-771). IEEE. Krishnan, R. (2022). Banana disease detection using deep learning algorithms. Computers and Electronics in Agriculture, 192, 106558. Krohling, R. A., Esgario, G. J. M., & Ventura, J. A. (2019). BRACOL - A Brazilian Arabica Coffee Leaf images dataset to identification and quantification of coffee diseases and pests. Mendeley Data, V1. https://doi.org/10.17632/yy2k5y8mxg.1 Lasso, E., Arevalo, W. M., & Rojas, J. P. (2015). Graph patterns as representation of rules extracted from decision trees for coffee rust detection. In Metadata and Semantics Research (pp. 101-112). Springer International Publishing. Lelis, A. K., Barbosa, R. R., & Santos, L. F. (2023). A comparative analysis of convolutional neural network architectures for coffee leaf rust detection. In 2023 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS) (pp. 1-6). IEEE. Li, Y., Lu, R., & Chen, L. (2020). Do we really need deep CNN for plant diseases identification? Computers and Electronics in Agriculture, 178, 105803. Liu, B. (2020). Grape disease detection using machine vision and deep learning. Journal of Agricultural Engineering Research, 182, 102-111. Luis, V. A. M., Quiñones, M. V. T., & Yumang, A. N. (2022). Classification of defects in robusta green coffee beans using YOLO. In 2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET) (pp. 1-6). IEEE. https://doi.org/10.1109/IICAIET55139.2022.9936831 Magomadov, V. (2019). Deep learning and its role in smart agriculture. Journal of Physics: Conference Series, IOP Publishing. Manso, G. L., Silva, L. F., & Ribeiro, D. R. (2019). A smartphone application to detection and classification of coffee leaf miner and coffee leaf rust. Journal of LATEX Templates. Marcos, A. P., Silva, M. A., & Melo, M. F. (2019). Coffee leaf rust detection using genetic algorithm. In 2019 XV Workshop de Visão Computacional (WVC) (pp. 1-6). IEEE. Marin, D. B., Silva, J. R., & Oliveira, E. L. (2021). Detecting coffee leaf rust with UAV-based vegetation indices and decision tree machine learning models. Computers and Electronics in Agriculture, 190, 106476. Martinez, F., Contreras, P., & Villalobos, P. (2022). A machine learning model for the diagnosis of coffee diseases. International Journal of Advanced Computer Science and Applications, 13(4) Mavridou, E. (2019). Precision agriculture through machine vision. Agricultural Systems, 174, 30-45. Martins, G. D., Reis, R. S., & De Castro, M. M. (2017). Detecting and mapping root-knot nematode infection in coffee crop using remote sensing measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(12), 5395-5403. McCook, S., & Vandermeer, J. (2015). The big rust and the red queen: Long-term perspectives on coffee rust research. Phytopathology, 105(9), 1164-1173. Mengistu, A. D., Desalegn, Z., & Mebrate, A. (2016). Ethiopian coffee plant diseases recognition based on imaging and machine learning techniques. International Journal of Database Theory and Application, 9(4), 79-88. Montalbo, F. J. P., & Hernandez, A. A. (2020). Classifying Barako coffee leaf diseases using deep convolutional models. International Journal of Advances in Intelligent Informatics, 6(2), 197-209. Novtahaning, D., Salam, A., & Yanuar, D. (2022). Deep learning ensemble-based automated and high-performing recognition of coffee leaf disease. Agriculture, 12(11), 1909. Palacio, J. C. R., Bunn, C., Rahn, E., Little-Savage, D., Schmidt, P., & Ryo, M. (2024). Geographic-scale coffee cherry counting with smartphones and deep learning. Plant Phenomics, 6, Article 0165. https://doi.org/10.34133/plantphenomics.0165 Pereira, E. J., Picanço, M. C., Bacci, L., Crespo, A. L., & Miranda, M. M. (2007). Seasonal mortality factors of the coffee leafminer, Leucoptera coffeella. Bulletin of Entomological Research, 97(4), 421-432. Philippine Statistics Authority. (2022). Philippine coffee production statistics. Retrieved from https://psa.gov.ph/content/philippine-coffee-production-statistics Piato, D. (2021). Impact of climate change on coffee production. Climate Change Journal, 12(3), 456-472. Prabhu, A., & Isiri, K. (2022). A deep learning approach to identify defects in coffee leaves using convolutional neural network. In 2022 International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON) (pp. 1-5). IEEE. Rahman, M. M. (2020). Rice disease detection using image processing and machine learning. Computers and Electronics in Agriculture, 178, 105678. Ramamurthy, K., Venkatesh, V., & Ravindran, D. (2023). A novel deep learning architecture for disease classification in Arabica coffee plants. Concurrency and Computation: Practice and Experience, 35(8), e7625. Ramcharan, A., McCloskey, P., Bartholomew, P. W., Ahmed, B., Legg, J. P., & Hughes, D. P. (2017). Cassava disease detection using mobile images and machine learning. Plant Methods, 13, 1-12. Ribeyre, F., & Avelino, J. (2012). Impact of field pests and diseases on coffee quality. In Specialty Coffee: Managing Quality (pp. 151-176). CABI. Saleem, M. H., Potgieter, J., & Arif, K. M. (2019). Plant disease detection and classification by deep learning. Plants, 8(11), 468. https://doi.org/10.3390/plants8110468 Saxena, O., Jain, R., & Saxena, A. (2021). Disease detection in plant leaves using deep learning models: AlexNet and GoogLeNet. In 2021 IEEE International Conference on Technology, Research, and Innovation for Betterment of Society (TRIBES) (pp. 1-6). IEEE. Selvaraj, M. G., Ghosh, R., & Banko, C. (2019). Banana disease detection using deep learning techniques. Computers and Electronics in Agriculture, 168, 105172. Steen, K. A., Olsson, H., & Knudsen, L. B. (2016). Using deep learning to challenge safety standard for highly autonomous machines in agriculture. Journal of Imaging, 2(1), 6. Suparyanto, T., Kurniawan, F., & Mubarok, A. (2022). Detecting Hemileia vastatrix using Vision AI as supporting to food security for smallholder coffee commodities. In IOP Conference Series: Earth and Environmental Science (Vol. 1101, p. 012053). IOP Publishing. Tassis, L. M., Garcia, J. F., & Rodrigues, L. R. (2021). A deep learning approach combining instance and semantic segmentation to identify diseases and pests of coffee leaves from in-field images. Computers and Electronics in Agriculture, 186, 106191. Tian, Y. (2020). Advancements in agricultural machine vision for disease detection. Smart Agriculture, 15, 22-34. Trivedi, S. (2021). Tomato plant disease identification using convolutional neural networks. Plant Methods, 17, 1-12. USDA. (2022). Coffee production statistics. Retrieved from https://www.usda.gov/content/coffee-production-statistics Valdoria, J. C., de Guzman, E. R., & Orosa, M. A. (2019). iDahon: An android-based terrestrial plant disease detection mobile application through digital image processing using deep learning neural network algorithm. In 2019 4th International Conference on Information Technology (InCIT) (pp. 101-105). IEEE. Vassallo-Barco, M., Silva, L. F., & Santos, J. M. (2017). Automatic detection of nutritional deficiencies in coffee tree leaves through shape and texture descriptors. Journal of Digital Information Management, 15(1). Velásquez, D., Gonzalez, F., & Rojas, J. (2020). A method for detecting coffee leaf rust through wireless sensor networks, remote sensing, and deep learning: Case study of the Caturra variety in Colombia. Remote Sensing, 10, 697. https://doi.org/10.3390/rs10050697 Wakas, D. (2020). Climate change and its effects on Philippine agriculture. Journal of Environmental Science, 14(2), 311-320. Waldamichael, F. G., Bekele, A. A., & Amare, T. (2022). Coffee disease detection using a robust HSV color‐based segmentation and transfer learning for use on smartphones. International Journal of Intelligent Systems, 37(8), 4967-4993. Waller, J. M. (1992). Cercospora leaf spot and berry blotch. In Diseases of Tropical Crops (pp. 151-153). CABI. Waller, J. M. (2001). Coffee pests, diseases, and their management. In Crop Protection Compendium (pp. 169-172). CABI. Wang, G., Qian, Y., & Song, Y. (2017). Automatic image-based plant disease severity estimation using deep learning. Computational Intelligence and Neuroscience, 2017, 2917536. Wani, J. A., Shah, S. H., & Ahmad, I. (2022). Machine learning and deep learning-based computational techniques in automatic agricultural diseases detection: Methodologies, applications, and challenges. Archives of Computational Methods in Engineering, 29(1), 641-677. Yamashita, J. V. Y. B., & Leite, J. P. R. (2023). Coffee disease classification at the edge using deep learning. Smart Agricultural Technology, 4, 100183. https://doi.org/10.1016/j.atech.2023.100183 Yebasse, M., Benali, R., & El Abbassi, I. (2021). Coffee disease visualization and classification. Plants, 10(6), 1257. https://doi.org/10.3390/plants10061257 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93078 | - |
dc.description.abstract | 本研究針對全球咖啡產業因咖啡植物病害日益猖獗而面臨的挑戰,這些病害影響了咖啡產量的質量和數量。本研究引入了一種將計算機視覺技術與深度學習模型相結合的方法,用於檢測和分類咖啡病害並估計病害嚴重程度。研究使用了來自不同來源的1086張圖像數據集,包括阿拉比卡和羅布斯塔咖啡葉片圖像。這些圖像通過處理技術增強後,用於訓練和評估深度學習模型YOLO。YOLO深度學習模型以94.2%的總體mAP50分類病害類型。此外,模型以0.1的置信度閾值量化病害嚴重程度,整體精度為69.6%,從而實現對咖啡植物感染的全面評估。該雙層分類系統使農民和專家能夠通過YOLOv8做出明智的決定,在檢測、分類和估計咖啡葉病害的嚴重程度方面,總體準確率達到78.55%。 | zh_TW |
dc.description.abstract | This study addresses the challenges faced by the global coffee industry due to the increasing prevalence of coffee plant diseases, which affect the quality and quantity of coffee yield. This research introduces an approach integrating computer vision technology with deep learning models to detect and classify coffee diseases and estimate disease severity. A dataset of 1,086 images from various sources, including Arabica and Robusta coffee leaf images was used. These images, augmented with processing techniques, serve as the foundation for training and evaluating deep learning model, YOLO. The YOLO deep learning model classifies disease types with an overall mAP50 of 94.2%. Additionally, the model quantifies disease severity with an overall Precision of 69.6% with a confidence threshold of 0.1, enabling a comprehensive assessment of the infection in coffee plants. This dual-tier classification system empowers farmers and specialists to make informed decisions in detecting, classifying, and estimating the severity of coffee leaf diseases through YOLOv8, achieving an overall accuracy of 78.55%. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-17T16:18:02Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-17T16:18:02Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | ACKNOWLEDGEMENT ii
摘要 iii ABSTRACT iv LIST OF TABLES vii LIST OF FIGURES viii CHAPTER 1. INTRODUCTION 1 1.1 Research Background 1 1.2 Research Purpose 2 CHAPTER 2. LITERATURE REVIEW 4 2.1 Coffee Diseases 4 2.2 Coffee Leaf Disease Detection 6 2.3 Image Processing Techniques 8 2.4 Deep Learning in Other Coffee Plant Parts and other Plants 9 CHAPTER 3. MATERIALS AND METHODS 10 3.1 Experiment Design and Image Dataset Collection 10 3.2 Dataset Categorization 11 3.3 YOLO Architecture 13 3.4 Annotation of the Whole Leaf 14 3.5 Annotation of Lesions 15 3.6 Severity Estimation 15 3.6 Evaluation Metrics 17 CHAPTER 4. RESULTS AND DISCUSSION 19 4.1 Leaf Disease Identification 19 4.1.1 Comparison of YOLO Models 19 4.1.2 Performance of YOLOv8 for Whole Leaf Identification 22 4.2 Lesions Segmentation 25 4.2.1 Training of YOLO v8 for Lesions 25 4.2.2 YOLOv8 at Different Confidence Thresholds with IoU=0.5 26 4.2.3 Model Performance of YOLOv8 for Lesions 27 4.2.4 Misclassified Regions and Images 28 4.3 Severity Estimation 31 4.4 Utilizing the Model for Farmers' Applications 34 CHAPTER 5. CONCLUSION AND FUTURE WORKS 35 5.1 Conclusion 35 5.2 Future Works 36 REFERENCES 37 | - |
dc.language.iso | zh_TW | - |
dc.title | 使用深度學習方法識別咖啡葉病害並估計嚴重程度 | zh_TW |
dc.title | Coffee Leaf Disease Identification and Severity Estimation using Deep Learning Methods | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 郭彥甫;劉力瑜 | zh_TW |
dc.contributor.oralexamcommittee | Yan-Fu Kuo;Li-Yu D Liu | en |
dc.subject.keyword | 咖啡,植物病害,圖像處理,深度學習,YOLO, | zh_TW |
dc.subject.keyword | coffee,plant diseases,image processing,deep learning,YOLO, | en |
dc.relation.page | 42 | - |
dc.identifier.doi | 10.6342/NTU202401339 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-07-05 | - |
dc.contributor.author-college | 共同教育中心 | - |
dc.contributor.author-dept | 全球農業科技與基因體科學碩士學位學程 | - |
Appears in Collections: | 全球農業科技與基因體科學碩士學位學程 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-112-2.pdf | 3.61 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.