請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93060
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃永芬 | zh_TW |
dc.contributor.advisor | Yung-Fen Huang | en |
dc.contributor.author | 丁芝筠 | zh_TW |
dc.contributor.author | Chih-Yun Ting | en |
dc.date.accessioned | 2024-07-17T16:12:35Z | - |
dc.date.available | 2024-07-18 | - |
dc.date.copyright | 2024-07-17 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-11 | - |
dc.identifier.citation | 王思涵、施意敏、張俊達、蕭振文,2018a。荷蘭泌乳牛餵飼國產天鵝燕麥乾草對其乾物質採食量、體重、產乳量及乳品質之影響。畜產研究51 (4):265–271。
王思涵、施意敏、陳怡璇、張俊達、李國華、賈玉祥,2018b。飼糧中添加燕麥青貯料對荷蘭牛泌乳性能之影響。畜產研究51 (2):109–115。 朱明宏、王紓愍、游翠凰、陳嘉昇,2018。黑燕麥在不同收穫期之芻料產量、品質及青貯調製研究。畜產研究51 (1):16–23。 李春芳,1999。近紅外線反射光譜分析 (NIRS) 在牧草營養研究上之應用。八十八年度飼料製造技術研習會專輯,149–160。 呂禮佳,2012。推動國產芻料作物契作之成果。農政與農情238:56。 施意敏,2015。臺灣冬季芻料的新選擇––燕麥。酪農天地雜誌112:37–39。 施意敏、李姿蓉,2020。臺灣北部地區芻料用燕麥生產與利用之研究。畜產研究53 (4):244–252。 孫珮瑛、許雅琳,2018。從普查綜觀農地活化下農牧業生產結構之變化。主計月刊746:6–12。 陳榮坤、楊純明,2002。簡介農作物光譜––植被光譜特徵與植體水分含量之關係。技術服務13 (2):7–13。 陳嘉昇、王紓愍,2004a。狼尾草營養成分近紅外光分析檢量線之探討。畜產研究37 (2):195–204。 陳嘉昇、王紓愍,2004b。盤固草化學成分近紅外光分析檢量線之建立。畜產研究37 (2):97–104。 陳嘉昇、王紓愍,2008。青割玉米營養成分近紅外光分析檢量線的探討。畜產研究41 (4):319–327。 陳昱安,2017。臺灣水稻田轉作政策之思維演變。農政與農情301:66。 梁世祥、葉益男、王思涵、蕭振文、徐濟泰、吳榮杰,2018。臺灣冬季裡作栽培芻料用燕麥活化休耕地之經濟效益評估。畜產研究51 (3):217–223。 陳嘉昇、黃永芬、游翠凰、王紓愍,2021。芻料燕麥營養成分變動之探討。畜產研究54 (2):116–125。 陳勃聿、田玉娟、范耕榛,2022。以小麥、大麥及燕麥作為臺灣南部地區冬季芻料之評估。畜產研究55 (2):128–136。 陳勃聿、張世融,2022。有效益芻料作物甜高粱及燕麥之生產 III. 地區輪作模式之經濟效益與 SWOT 分析。畜產研究55 (4):256–266。 陳思彤,2024。利用無人機擷取之多光譜影像近似燕麥芻料性狀。碩士論文,國立臺灣大學農藝學研究所。 曾美倉 ,1994。燕麥,載於蔡文福 (主編),雜糧作物各論 I.禾穀類 (131–168頁)。臺北:財團法人臺灣區雜糧發展基金會。 張芳銘、楊純明,2003。簡介農作物光譜-利用光譜特徵估測盤固草化學組成分之可行性。技術服務14 (3):1–5。 黃文意,2006。草食動物芻料供應之執行成果及展望。農政與農情166:57。 黃永芬、陳嘉昇,2020。燕麥。新編臺灣雜糧作物 (一)。財團法人臺灣區雜糧發展基金會,106–139。 蔡亞諭,2023。後疫情時代國際大宗物資情勢及趨勢研析。經濟研究年刊23 (6):1–29。 盧啟信、許福星,1998。以近紅外光分析測定盤固草之粗蛋白質、酸洗纖維、粗纖維。畜產研究31 (1):77–85。 盧啟信、許福星,2007。利用近紅外光分析儀 (NIRS) 快速測定青貯料品質。畜產研究40 (1):17–23。 盧啟信,2013。國內酪農業降低生產成本的新契機~活化休耕地轉作牧草及青割玉米。臺南區農業專訊83:13–16。 蕭素碧、梁世祥,2013。芻料用燕麥介紹。畜產專訊85:16–17。 蕭素碧,2014。台灣燕麥草生產及展望。光泉廠農通訊86期。 農業部農業統計資料查詢,2024。https://agrstat.moa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx. Accessed on May 31, 2024. Abdel-Rahman EM, Mutanga O, Odindi J, Adam E, Odindo A, Ismail R (2014) A comparison of partial least squares (PLS) and sparse PLS regressions for predicting yield of Swiss chard grown under different irrigation water sources using hyperspectral data. Computers and Electronics in Agriculture 106:11-19 Adam E, Mutanga O (2009) Spectral discrimination of papyrus vegetation (Cyperus papyrus L.) in swamp wetlands using field spectrometry. ISPRS Journal of Photogrammetry and Remote Sensing 64:612-620 Adjorlolo C, Mutanga O, Cho MA (2015) Predicting C3 and C4 grass nutrient variability using in situ canopy reflectance and partial least squares regression. International Journal of Remote Sensing 36:1743-1761 Aguirre Castro P, Garbulsky MF (2018) Spectral normalized indices related with forage quality in temperate grasses: scaling up from leaves to canopies. International journal of remote sensing 39:3138-3163 Ahmad M, Dar Z, Habib M (2014) A review on oat (Avena sativa L.) as a dual-purpose crop. Scientific Research and Essays 9:52-59 Asekova S, Han SI, Choi HJ, Park SJ, Shin DH, Kwon CH, Shannon JG, Lee JD (2016) Determination of forage quality by near-infrared reflectance spectroscopy in soybean. Turkish Journal of Agriculture and Forestry 40:45-52 Bajwa S, Bajcsy P, Groves P, Tian L (2004) Hyperspectral image data mining for band selection in agricultural applications. Transactions of the ASAE 47:895-907 Barnes R, Dhanoa MS, Lister SJ (1989) Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied spectroscopy 43:772-777 Biewer S, Fricke T, Wachendorf M (2009) Development of canopy reflectance models to predict forage quality of legume–grass mixtures. Crop Science 49:1917-1926 Blackburn GA (2007) Hyperspectral remote sensing of plant pigments. Journal of experimental botany 58:855-867 Boggs T (2016) Spectral python. Software Available from Brown PJ (1992) Wavelength selection in multicomponent near‐infrared calibration. Journal of chemometrics 6:151-161 Clark A (2015) Pillow (pil fork) documentation. readthedocs Coblentz W, Jokela W, Bertram M (2014) Cultivar, harvest date, and nitrogen fertilization affect production and quality of fall oat. Agronomy Journal 106:2075-2086 Coblentz WK, Bertam MG, Martin NP, Berzaghi P (2012) Planting Date Effects on the Nutritive Value of Fall-Grown Oat Cultivars. Agronomy Journal 104:312-323 Coblentz WK, Bertram MG, Martin NP (2011) Planting Date Effects on Fall Forage Production of Oat Cultivars in Wisconsin. Agronomy Journal 103:145-155 Coblentz WK, Coffey KP, Turner JE, Scarbrough DA, Weyers JS, Harrison KF, Johnson ZB, Daniels LB, Rosenkrans CF, Jr., Kellogg DW, Hubbell DS, 3rd (2000) Effect of maturity on degradation kinetics of sod-seeded cereal grain forage grown in northern Arkansas. J Dairy Sci 83:2499-2511 Coblentz WK, Nellis SE, Hoffman PC, Hall MB, Weimer PJ, Esser NM, Bertram MG (2013) Unique interrelationships between fiber composition, water-soluble carbohydrates, and in vitro gas production for fall-grown oat forages. Journal of Dairy Science 96:7195-7209 Contreras‐Govea FE, Albrecht KA (2006) Forage production and nutritive value of oat in autumn and early summer. Crop science 46:2382-2386 Deaville E, Flinn PC (2000) Near-infrared (NIR) spectroscopy: an alternative approach for the estimation of forage quality and voluntary intake Fisher DS, Mayland HF, Burns JC (1999) Variation in ruminants' preference for tall fescue hays cut either at sundown or at sunup. Journal of animal science 77:762-768 Gislum R, Micklander E, Nielsen J (2004) Quantification of nitrogen concentration in perennial ryegrass and red fescue using near-infrared reflectance spectroscopy (NIRS) and chemometrics. Field Crops Research 88:269-277 Gracia M-B, Armstrong PR, Rongkui H, Mark S (2017) Quantification of betaglucans, lipid and protein contents in whole oat groats (Avena sativa L.) using near infrared reflectance spectroscopy. Journal of Near Infrared Spectroscopy 25:172-179 Griggs TC, MacAdam JW, Mayland HF, Burns JC (2005) Nonstructural carbohydrate and digestibility patterns in orchardgrass swards during daily defoliation sequences initiated in evening and morning. Crop Science 45:1295-1304 Grossman YL, Ustin SL, Jacquemoud S, Sanderson EW, Schmuck G, Verdebout J (1996) Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data. Remote Sensing of Environment 56:182-193 Hansen PM, Schjoerring JK (2003) Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment 86:542-553 Harris CR, Millman KJ, Van Der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ (2020) Array programming with NumPy. Nature 585:357-362 Huang CW, Liang WH, Esvelt Klos K, Chen CS, Huang YF (2020) Evaluation of agronomic performance and exploratory genome‐wide association study of a diverse oat panel for forage use in Taiwan. Grassland science 66:249-260 Jacobs J, Hill J, Jenkin T (2009) Effect of stage of growth and silage additives on whole crop cereal silage nutritive and fermentation characteristics. Animal Production Science 49:595-607 Jiang J-H, Berry RJ, Siesler HW, Ozaki Y (2002) Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data. Analytical chemistry 74:3555-3565 Jin J, Wang Q (2018) Selection of informative spectral bands for PLS models to estimate foliar chlorophyll content using hyperspectral reflectance. IEEE Transactions on Geoscience and Remote Sensing 57:3064-3072 Kawamura K, Watanabe N, Sakanoue S, Inoue Y (2008) Estimating forage biomass and quality in a mixed sown pasture based on partial least squares regression with waveband selection. Grassland Science 54:131-145 Kawamura K, Watanabe N, Sakanoue S, Lee HJ, Inoue Y, Odagawa S (2010) Testing genetic algorithm as a tool to select relevant wavebands from field hyperspectral data for estimating pasture mass and quality in a mixed sown pasture using partial least squares regression. Grassland Science 56:205-216 Kim D, Kim J, Kwon C, Kim W, Han K, Kim J (1996) Comparative studies of introduced oats for forage production. III. Forage performance of Western Australian oat cultivars Kim J, Kim S, Abuel S, Kwon C, Shin C, Ko K (2006) Effect of location, season, and variety on yield and quality of forage oat. Asian-Australasian Journal of Animal Sciences 19:970-977 Leardi R, Gonzalez AL (1998) Genetic algorithms applied to feature selection in PLS regression: how and when to use them. Chemometrics and Intelligent Laboratory Systems 41:195-207 Lowe A, Harrison N, French AP (2017) Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods 13:80 Mao B, Li M, Sun H, Liu H, Zhang J, Zhang Q (2017) Optimization of spectroscopy parameters and prediction of chlorophyll content at seeding stage of winter wheat. Transactions of the Chinese Society of Agricultural Engineering 33:164-169 Marten G, Brink G, Buxton D, Halgerson J, Hornstein J (1984) Near Infrared Reflectance Spectroscopy Analysis of Forage Quality in Four Legume Species 1. Crop Science 24:1179-1182 Martens H (2001) Reliable and relevant modelling of real world data: a personal account of the development of PLS regression. Chemometrics and intelligent laboratory systems 58:85-95 Mevik B-H, Wehrens R (2015) Introduction to the pls Package. Help section of the “Pls” package of R studio software:1-23 Moorby JM, Evans RT, Scollan ND, MacRae JC, Theodorou MK (2006) Increased concentration of water‐soluble carbohydrate in perennial ryegrass (Lolium perenne L.). Evaluation in dairy cows in early lactation. Grass and Forage Science 61:52-59 Mordvintsev A, Abid K (2014) Opencv-python tutorials documentation. Obtenido de https://media readthedocs org/pdf/opencv-python-tutroals/latest/opencv-python-tutroals pdf Ng W, Minasny B, Mendes WdS, Demattê JAM (2020) The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data. Soil 6:565-578 Norris K, Barnes R, Moore J, Shenk J (1976) Predicting forage quality by infrared replectance spectroscopy. Journal of animal science 43:889-897 Pandey P, Ge Y, Stoerger V, Schnable JC (2017) High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. Frontiers in plant science 8:259439 Patel MK, Padarian J, Western AW, Fitzgerald GJ, McBratney AB, Perry EM, Suter H, Ryu D (2023) Retrieving canopy nitrogen concentration and aboveground biomass with deep learning for ryegrass and barley: comparing models and determining waveband contribution. Field Crops Research 294:108859 Peerbhay KY, Mutanga O, Ismail R (2013) Commercial tree species discrimination using airborne AISA Eagle hyperspectral imagery and partial least squares discriminant analysis (PLS-DA) in KwaZulu-Natal, South Africa. Isprs Journal of Photogrammetry and Remote Sensing 79:19-28 Penuelas J, Baret F, Filella I (1995) Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 31:221-230 Pu R-l, Gong P (2000) Hyperspectral remote sensing and its applications. Higher Education, Beijing 8 Pullanagari R, Yule I, Tuohy M, Hedley M, Dynes R, King W (2012) In-field hyperspectral proximal sensing for estimating quality parameters of mixed pasture. Precision agriculture 13:351-369 Shenk JS, Workman Jr JJ, Westerhaus MO (2007) Application of NIR spectroscopy to agricultural products. Handbook of near-infrared analysis. CRC Press, pp 365-404 Shorten PR, Leath SR, Schmidt J, Ghamkhar K (2019) Predicting the quality of ryegrass using hyperspectral imaging. Plant Methods 15:1-12 Song D, De Silva K, Brooks MD, Kamruzzaman M (2023) Biomass prediction based on hyperspectral images of the Arabidopsis canopy. Computers and Electronics in Agriculture 210:107939 Starks PJ, Coleman SW, Phillips WA (2004) Determination of forage chemical composition using remote sensing. Journal of Range Management 57:635-640 Stuart P, Slatter J, Elliott B, Busby G (2002) The Forage book; a comprehensive guide to forage management. Pacific Seeds Pty Ltd., Toowoomba, Australia Sun S, Zuo Z, Yue W, Morel J, Parsons D, Liu J, Peng J, Cen H, He Y, Shi J (2022) Estimation of biomass and nutritive value of grass and clover mixtures by analyzing spectral and crop height data using chemometric methods. Computers and Electronics in Agriculture 192:106571 Suttie JM, Reynolds SG (2004) Fodder oats: a world overview. Food & Agriculture Org. Tosi S (2009) Matplotlib for Python developers. Packt Publishing Ltd Wang Z, Fan S, Wu J, Zhang C, Xu F, Yang X, Li J (2021) Application of long-wave near infrared hyperspectral imaging for determination of moisture content of single maize seed. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 254:119666 Wold S, Sjöström M, Eriksson L (2001) PLS-regression:: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems 58:109-130 Yang F, Li J, Gan X, Qian Y, Wu X, Yang Q (2010) Assessing nutritional status of Festuca arundinacea by monitoring photosynthetic pigments from hyperspectral data. Computers and Electronics in Agriculture 70:52-59 Zhang Q, Li Q, Zhang G (2012) Rapid determination of leaf water content using VIS/NIR spectroscopy analysis with wavelength selection. Journal of Spectroscopy 27:93-105 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93060 | - |
dc.description.abstract | 燕麥 (Avena sativa. L) 是世界上重要的芻料作物之一,也是臺灣大宗的進口乾草。牧草化學組成反映牧草品質,並仰賴化學分析,其分析時間長且成本高。高光譜影像為近年來用於近似牧草化學成分的工具,須建立符合待測樣本之光譜與化學成分之關係以利成分預測。為以高光譜資料近似國產燕麥乾草化學成分,本研究拍攝燕麥植株的高光譜影像,搭配傳統化學分析,使用偏最小平方回歸法配適燕麥植株之反射光譜與三種產量性狀及八種營養成分之關聯性以建立各性狀相對應之檢量線並評估其應用於芻料燕麥牧草品質預測之可行性。本試驗為期兩年,第一年度選用四個燕麥品系,於不同生育期間收穫十次;第二年度增加八個品系,於各品系達抽穗時收穫。本研究比較不同波段範圍之性狀預測性能,包含全波段 (400 – 1000 nm)、可見光 (400 – 700 nm)、近紅外光 (700 – 1000 nm) 和近似市售多光譜儀器之18個光譜波段。結果顯示,參試品系於抽穗期收穫可獲得相對穩定的生物量及乾草品質。另,不同波段範圍與不同性狀的相關性不一,如近紅外光於可溶性碳水化合物相對重要;且僅使用18個光譜波段於乾草品質的預測相關係數可達0.63 – 0.75。本研究之結果可提供未來芻料燕麥育種即時且精確之性狀評估與試驗所需設備之參考。 | zh_TW |
dc.description.abstract | Oat (Avena sativa L.) is one of the important forage crops globally and represents a significant portion of imported hay in Taiwan. The chemical composition of forage reflects its quality. It is determined through chemical analysis, which is time-consuming and costly. Recently, hyperspectral imaging has been used to approximate the chemical composition of forage. However, it is necessary to establish a relationship between the spectral reflectance and the chemical composition of the samples to facilitate the prediction of chemical composition. The aim of this study was to use the hyperspectral data to approximate the chemical composition of locally produced oat hay. The hyperspectral data, together with three yield-related traits and eight chemical components of forage oats, were modeled using partial least squares regression to establish the respective calibration curves. The field experiment of this study was conducted during two years. In the first year, four oat lines were grown and harvested at ten dates corresponding to different growth stages. In the second year, eight lines were added and harvested at heading for each line. We compared the predictive performance of different wavelength ranges, including full wavelength (400 – 1000 nm), visible (400 – 700 nm), near-infrared (700 – 1000 nm), and commercially available multispectral wavelength range. The results showed that all the tested lines could achieve relatively stable biomass and hay quality when harvested at the heading stage. Furthermore, different wavelength ranges showed different predictive performance for different traits. For example, near-infrared was relatively important for water soluble carbohydrates, and the predictive ability of using only 18 wavebands could reach 0.63 – 0.75. The results of this study provide guidance for future forage oat phenotyping research and breeding. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-17T16:12:35Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-17T16:12:35Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書
致謝 i 摘要 ii Abstract iii 目次 iv 表次 vi 圖次 vii 中英對照表 viii 1. 前言 1 1.1. 國產芻料的需求 1 1.1.1. 臺灣國產牧草 1 1.1.2. 臺灣農業政策與牧草 2 1.2. 芻料燕麥作為國產牧草的潛力 3 1.2.1. 國產芻料燕麥營養價值 3 1.3. 芻料燕麥品種選育 5 1.3.1. 作物性狀資料蒐集 5 1.3.2. 高光譜影像建構預測模型 6 1.4. 研究目的 7 2. 材料與方法 7 2.1. 試驗設計與植物材料 8 2.2. 芻料燕麥乾草營養成分分析 9 2.2.1. 乾物質 (Dry matter, DM) 9 2.2.2. 體外乾物質消化率 (in vitro dry matter digestibility, IVDMD) 9 2.2.3. 體外中洗纖維消化率 (in vitro neutral detergent fiber digestibility, IVNDFD) 10 2.2.4. 體外真乾物質消化率 (in vitro true dry matter degradability, IVTDMD) 11 2.2.5. 含灰分中洗纖維 (Neutral detergent fiber, NDF) (Ankom methods) 11 2.2.6. 含灰分酸洗纖維(Acid detergent fiber, ADF) (Ankom methods) 12 2.2.7. 粗蛋白質 (Crude protein, CP) 12 2.2.8. 可溶性碳水化合物 (Water soluble carbohydrates, WSC) 13 2.2.9. 灰分 (Ash) 14 2.3. 高光譜影像 14 2.4. 資料分析 16 3. 結果 18 3.1. 芻料燕麥產量與乾草品質 18 3.2. 第一年度 (2020 – 2021年) 預測第二年度 (2021 – 2022年) 21 3.3. 不同波段範圍之模型性能表現 23 4. 討論 24 4.1. 本研究芻料燕麥性狀表現 24 4.2. 收穫時間和品種特性於芻料品質的影響 25 4.3. 刈割時間於芻料WSC含量的影響 26 4.4. 高光譜資料預處理 26 4.5. 反射光譜 27 4.6. 影響年度間模型預測性能的因子 28 4.7. 特徵波段 28 4.8. 光譜波段於性狀預測的能力 29 5. 結論 31 參考文獻 68 附錄 77 | - |
dc.language.iso | zh_TW | - |
dc.title | 利用高光譜資料評估芻料燕麥營養價值 | zh_TW |
dc.title | Evaluating the nutritive values of forage oat using hyperspectral data | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 蔡欣甫;蔡育彰;陳嘉昇 | zh_TW |
dc.contributor.oralexamcommittee | Shin-Fu Tsai;Yu-Chang Tsai;Chia-Sheng Chen | en |
dc.subject.keyword | 燕麥 (Avena sativa L.),高光譜成像,營養價值,偏最小平方回歸, | zh_TW |
dc.subject.keyword | Oat (Avena sativa L.),hyperspectral imaging,nutritive values,partial least square regression (PLSR), | en |
dc.relation.page | 92 | - |
dc.identifier.doi | 10.6342/NTU202401562 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-07-11 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 農藝學系 | - |
dc.date.embargo-lift | 2029-07-09 | - |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 此日期後於網路公開 2029-07-09 | 7.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。