請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93033完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游文岳 | zh_TW |
| dc.contributor.advisor | Wen-Yueh Yu | en |
| dc.contributor.author | Banthita Woraphan | zh_TW |
| dc.contributor.author | Banthita Woraphan | en |
| dc.date.accessioned | 2024-07-12T16:22:21Z | - |
| dc.date.available | 2024-07-13 | - |
| dc.date.copyright | 2024-07-12 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-11 | - |
| dc.identifier.citation | [1] R. A. B. Peter M. Cox, Chris D. Jones, Steven A. Spall, Ian J. Totterdell “Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model,” Nature, vol. 408, pp. 184-187, 2000.
[2] K. C. Steven J. Davis, H. Damon Matthews, “Future CO2 Emissions and Climate Change from Existing Energy Infrastructure,” Science, vol. 329, no. 5997, pp. 1330-1333, 2010. [3] F. M. Giulia Bozzano, “Efficient methanol synthesis: Perspectives, technologies and optimization strategies,” Progress in Energy and Combustion Science, vol. 56, pp. 71-105, 2016. [4] R. R. Bottoms, Separating acid gases, G. Corp., 1930. [5] B. Z. Yuhou Pei, Yingying Lu, “Carbon capture and utilization via electrochemistry, what’s next?,” Next Nanotechnology, vol. 3-4, 2023. [6] M. S. C. Gasim Ibrahim, Hanif A. Choudhury, Guiyan Zang, Mahmoud M. El-Halwagi, Nimir O. Elbashir, “CO2Fix: An approach to assess CO2 fixation potential of CCU reaction pathways,” Computers & Chemical Engineering, vol. 178, 2023. [7] S. T. Qinghua Lai, Mohammed A. Assiri, Huaigang Cheng, Armistead G. Russell, Hertanto Adidharma, Maciej Radosz, Maohong Fan, “Catalyst-TiO(OH)2 could drastically reduce the energy consumption of CO2 capture,” Nat. Commun., vol. 9, 2018. [8] M. Bowker, “Methanol Synthesis from CO2 Hydrogenation,” ChemCatChem, vol. 11, no. 17, pp. 4238-4246, 2019. [9] H. R. Julian Schittkowski, Daniel Laudenschleger, Kai Girod, Kevin Kähler, Stefan Kaluza, Martin Muhler, Robert Schlögl, “Methanol Synthesis from Steel Mill Exhaust Gases: Challenges for the Industrial Cu/ZnO/Al2O3 Catalyst,” Chem.-Ing.-Tech, vol. 90, pp. 1419-1429, 2018. [10] M. S. S. Israf Ud Din, A. Naeem c, S Tasleem d, Pervaiz Ahmad e, “Revalorization of CO2 for methanol production via ZnO promoted carbon nanofibers based Cu-ZrO2 catalytic hydrogenation,” Journal of Energy Chemistry, vol. 39, pp. 68-76, 2019. [11] M. I. Noritatsu Tsubaki , Kaoru Fujimoto, “A New Method of Low-Temperature Methanol Synthesis,” Journal of Catalysis, vol. 197, no. 1, pp. 224-227, 2001. [12] G. Y. Lei Shi, Kai Tao, Yoshiharu Yoneyama, Yisheng Tan, and Noritatsu Tsubaki, “An Introduction of CO2 Conversion by Dry Reforming with Methane and New Route of Low-Temperature Methanol Synthesis,” Acc. Chem. Res., vol. 46, no. 8, pp. 1838–1847, 2013. [13] G. C. Budget, Annual total emissions of carbon dioxide (CO₂), excluding land-use change, measured in tonnes., Our World in Data, 2023. [14] P. K.-L. Sutida Meesattham “Low-temperature alcohol-assisted methanol synthesis from CO2 and H2: The effect of alcohol type,” International Journal of Hydrogen Energy, vol. 47, no. 54, pp. 22691-22703, 2022. [15] V. K. Eleni Heracleous, Angelos A. Lappas, Alexander Hauser, Stéphane Haag, “Valorization of steel-work off-gases: Influence of impurities on the performance of Cu-based methanol synthesis catalyst,” Chemical Engineering Journal, vol. 444, 2022. [16] A. Environmental Protection Agency, GA. Region IV., Background Information Document For Industrial Boilers, EPA-450/3-82-006 a-b; EPA-450/3-82-006 b, Research Triangle Park, N.C. Washington, D.C. Springfield, Va., 1982. [17] M. S. Patrick Schühle, Leonhard Schill, Anders Riisager, Peter Wasserscheid and Jakob Albert “Influence of gas impurities on the hydrogenation of CO2 to methanol using indium-based catalysts,” Catal. Sci. Technol., vol. 10, pp. 7309-7322, 2020. [18] Draft Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2022, EPA 430-D-24-001., 2024. [19] M. P. P. Mikalai Filonchyk, Lifeng Zhang, Volha Hurynovich, Yi He, “Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O,” Science of The Total Environment, 2024. [20] R. P. S. Likhittaphon, W. Fakyam, S. Charojrochkul, T. Sornchamni, N. Laosiripojana, S. Assabumrungrat, P. Kim-Lohsoontorn, “Effect of CuO/ZnO catalyst preparation condition on alcohol-assisted methanol synthesis from carbon dioxide and hydrogen,” International Journal of Hydrogen Energy, vol. 44, no. 37, pp. 20782-20791, 2019. [21] B. A. P. Trop, D. Goricanec, “Production of methanol from a mixture of torrefied biomass and coal,” Energy, vol. 77, pp. 125-132, 1 December 2014, 2014. [22] Methanol Market (By Feedstock: Coal, Natural gas, Biomass and Renewables; By Derivatives: MTO/MTP, Solvent, Biodiesel, Acetic acid, Formaldehyde, Others; By Application: Construction, Electronics, Automotive, Paint and Coating, Pharmaceuticals, Others; By Sub-derivatives) - Global Industry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecast 2023-2032, 1874, Precedence Research, 2024. [23] Innovation Outlook: Renewable Methanol The Many Uses of Methanol, International Renewable Energy Agency, Abu Dhabi: IRENA and Methanol Institute, 2021. [24] T. S. Christensen, Primdahl, I I, “Improve syngas production using autothermal reforming,” Hydrocarbon Processing, vol. 73, no. 3, 1994-03-01, 1994. [25] R. Z. Minhua Li, Feng Wang, Chao'en Li, “Global Methanol Production/Demand and Prospects,” Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2024. [26] G. Olah, Beyond Oil and Gas: The Methanol Economy, 3rd Edition ed., 2006. [27] M. R. R. Ali Reza Ahmadi, Mohammad Farsi, “Efficient recycling and onversion of CO2 to methanol: Process design and environmental assessment,” Chemical Engineering Research and Design, vol. 202, pp. 403-413, 2024. [28] G. M. Sofia D. Angeli, Alberto Giaconia, Angeliki A. Lemonidou, “State-of-the-art catalysts for CH4 steam reforming at low temperature,” International Journal of Hydrogen Energy, vol. 39, pp. 1979-1997, 2013. [29] Z. Q. Tang Pei, Wu Zhaoxuan, Ma Ding, “Methane activation: The past and future,” Energy and Environmental Science, vol. 7, no. 8, pp. 2580 - 2591, 2014. [30] J. T. G. Fanglin Che, Su Ha, and Jean-Sabin McEwen, “Improving Ni Catalysts Using Electric Fields: A DFT and Experimental Study of the Methane Steam Reforming Reaction,” ACS Catal., vol. 7, no. 1, pp. 551-562, 2017. [31] H. K. G. Ertl, J. Weitkamp Handbook of Heterogeneous Catalysis, Ludwigshafen. Germany: VCH Verlagsgesellschaft mbH, Weinheim (Federal Republic of Germany), 1997. [32] C. Y.-G. Tomishige Keiichi, nFujimoto Kaoru, “Studies on carbon deposition in CO2 reforming of CH4 over nickel-magnesia solid solution catalysts,” Journal of Catalysis, vol. 181, no. 1, pp. 91-103, 1999. [33] Y. Z. Kai Tao, Soichiro Terao, Noritatsu Tsubaki, “Development of platinum-based bimodal pore catalyst for CO2 reforming of CH4,” Catalysis Today, vol. 153, no. 3-4, pp. 150-155, 2010. [34] A. A. R. N. Salahudeen, A. Babalola , A.U. Moses, “Review on technologies for conversion of natural gas to methanol,” Journal of Natural Gas Science and Engineering, vol. 108, pp. 104845, 2022. [35] J. S. J.R. Rostrup-Nielsen, J.K. Norskov, “Hydrogen and synthesis gas by steam-and CO2 reforming,” Adv. Catal., vol. 47, pp. 65-139, 2002. [36] D. P. V.L. Sushkevich, M. Ranocchiari, J.A. van Bokhoven, “Selective anaerobic oxidation of methane enables direct synthesis of methanol,” Science, vol. 356, no. 6337, pp. 523-527, 2017. [37] H. B. W. Belabbas, B. Haddou, W. Shen, “Improved Design of Lurgi Reactor for Methanol Synthesis Industry,” Chemical Engineering & Technology, 2018. [38] Z. J. Y. Qingchun, C. Genyun, Z. Huairong, Z. Dawei, “Optimal Design,thermodynamic and economic analysis of coal to ethylene glycol processes integrated with various methane reforming technologies for CO2 reduction,” Energy Convers. Manag., vol. 244 (2021), 2021. [39] T. M. Timo Blumberg, and George Tsatsaronis, “A Comparative Exergoeconomic Evaluation of the Synthesis Routes for Methanol Production from Natural Gas,” Applied Sciences, vol. 7, no. 12, pp. 1213, 2017. [40] D. E. Noerma J. Azharia, St Mardianab, Thalabul Ilmic, Melia L. Gunawan, I.G.B.N. Makertihartha, Grandprix T.M. Kadja, “Methanol synthesis from CO2: A mechanistic overview,” Results in Engineering, vol. 16, pp. 100711, 2022. [41] L. C. G. a. M. Mavrikakis, “Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation,” ACS Catal., vol. 1, no. 4, pp. 365–384, 2011. [42] Z. W. Shunan Zhang, Xiufang Liu, Kaimin Hua, Zilong Shao, Baiyin Wei, Chaojie Huang, Hui Wang, and Yuhan Sun, “A Short review of recent advances in direct CO2 hydrogenation to alcohols,” Topics in Catalysis, vol. 64, pp. 371-394, 2021. [43] Y. X. Zhong Jiawei, Wu Zhilian, Liang Binglian, Huang Yanqiang, and Zhang Tao, “State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol,” Chemical Society Reviews, vol. 49, no. 5, pp. 1385-1413, 2020. [44] R. J. R. Gormley, V. U. S.; Soong, Y.; Micheli, E., “Methyl formate hydrogenolysis for low-temperature methanol synthesis,” Applied Catalysis A: General, vol. 87, no. 1, pp. 81, 1992. [45] M. G. W. Yixiong Yang, and Ping Liu, “Theoretical Study of Methanol Synthesis from CO2 Hydrogenation on Metal-Doped Cu(111) Surfaces,” J. Phys. Chem. C, vol. 116, no. 1, pp. 248-256, 2012. [46] S. K. K. Xiaoti Cui, “A comparative study on three reactor types for methanol synthesis from syngas and CO2,” Chemical Engineering Journal, vol. 393, pp. 124632, 2020. [47] S. T. Ekaterina S. Borovinskaya, Felix Alscher and Cornelia Breitkopf, “Synthesis, Modification, and Characterization of CuO/ZnO/ZrO2 Mixed Metal Oxide Catalysts for CO2/H2 Conversion,” Catalysts, vol. 9, no. 12, 2019. [48] R. A. J. N.S. Bajaj, “Synthesis and characterization techniques,” Energy materials, pp. 61-82, 2021. [49] F. H. R. Bahman Vasheghani Farahani, Mohsen Bahmani, Marzieh Ghelichkhani, Saeed Sahebdelfar, “Influence of precipitation conditions on precursor particle size distribution and activity of Cu/ZnO methanol synthesis catalyst,” Applied Catalysis A: General, vol. 482, pp. 237-244, 2014. [50] S. K. Claire L. Hobday, Sven M. J. Rogge, Jack D. Evans, and Hana Bunzen, “Perspectives on the Influence of Crystal Size and Morphology on the Properties of Porous Framework Materials,” Front Chem., vol. 9, 2021. [51] 罗. 吴治华, 周焕文, Methanol and ethyl acetate separating method, China,to Dalian Institute of Chemical Physics of CAS, 1999. [52] V. P. Alvaro Risco, Julia A. Heydenreich, Jordi Bonet, Alexandra-Elena Bonet-Ruiz, Aureli Calvet, Petrica Iancu, Joan Llorens “Pressure selection for non-reactive and reactive pressure-swing distillation,” Chemical Engineering and Processing - Process Intensification, vol. 135, pp. 9-21, 2019. [53] B. D. Metz, Ogunlade & de Coninck, Heleen & Loos, Manuela & Meyer, Leo. , Special Report on Carbon dioxide Capture and Storage. , Intergovernmental Panel on Climate Change (IPCC), 2005. [54] R. A. Meyers, Handbook of Petroleum Refining Processes, Third Edition, 2004. [55] B. R. Roger, separating acidic gases,to Girdler Corp, 1930. [56] N. M. Jannis Hack, and Daniel M. Meier, “Review on CO2 Capture Using Amine-Functionalized Materials,” ACS Omega, vol. 7, no. 44, pp. 39520–39530., 2022. [57] Y. C. Qian Ma, Bo Yuan, Zhaozheng Song, Jinjun Xue, Qingzhe Jiang, “Utilizing carbon dioxide from refinery flue gas for methanol production: System design and assessment,” Energy, vol. 249, 2022. [58] M. S. Patrick Schühle, Leonhard Schill, Anders Riisager, Peter Wasserscheida and Jakob Albert, “Influence of gas impurities on the hydrogenation of CO2 to methanol using indium-based catalysts,” catalysis Science & Technology, vol. 10, pp. 7309-7322, 2020. [59] L. M. C. Matthew R. Harrison, Theresa M. Shires, R. Michael Cowgill Methane emissions from the natural gas industry | Vol. 2: Technical report, EPA-600/R-96-080b, vol. 2, Research Triangle Park, NC, 1996. [60] C. J. F. Eric D. Lebel, Zutao Ouyang, and Robert B. Jackson, “Methane and NOx Emissions from Natural Gas Stoves, Cooktops, and Ovens in Residential Homes,” Environ. Sci. Technol., vol. 56, no. 4, pp. 2529-2539, 2022. [61] S. C. Yuan Chen, and Levi T. Thompson, “Low-Temperature CO2 Hydrogenation to Liquid Products via a Heterogeneous Cascade Catalytic System,” ACS Catal., vol. 5, no. 3, pp. 1717–1725, February 2, 2015, 2015. [62] N. P. Kreangkrai Maneeintr, Pattara Boonpipattanapong, Suttichai Assabumrungrat, Tawatchai Charinpanitkul, “Measurement of Solubility and Physical Properties of Aqueous Solution of 2-(Diethylamino)ethanol for CO2 Capture,” Energy Procedia, vol. 142, pp. 3625-3630, 2017. [63] C. A. Sakun Preedavijitkul, Supachai Jadsadajerm, Chombongkot Srijaroen, Piyasan Praserthdam, Bunjerd Jongsomjit, “Investigation on deactivation of Cu-Cr catalyst for direct ethanol dehydrogenation to ethyl acetate, acetaldehyde, and hydrogen,” Journal of the Taiwan Institute of Chemical Engineers, vol. 147, pp. 104895, 2023. [64] Y. F. D. Dong L. Zhang, Chuan B. Li, and Ji Chen, “Separation of Ethyl Acetate−Ethanol Azeotropic Mixture Using Hydrophilic Ionic Liquids,” Ind. Eng. Chem. Res., vol. 47, no. 6, pp. 1995–2001, 2008. [65] H. R. G. Songbo He, Zhuorigebatu Tegudeer, Anshu Chandel, Andre Heeres, Marc C.A. Stuart c, Hero Jan Heeres, “A time- and space-resolved catalyst deactivation study on the conversion of glycerol to aromatics using H-ZSM-5,” Chemical Engineering Journal, vol. 434, 2022. [66] A. G. Oki Muraza, “A review on coke management during dry reforming of methane,” Int. J. Energ Res., vol. 39, no. 9, pp. 1196-1216, 2015. [67] J. B. Aitor Ochoa, Ana G. Gayubo, Pedro Castaño, “Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: A review,” Renewable and Sustainable Energy Reviews, vol. 119, 2020. [68] W. Y. Kaihang Han, Leilei Xu, Zhiyong Deng, Hao Yu, Fagen Wang, “Reducing carbon deposition and enhancing reaction stability by ceria for methane dry reforming over Ni@SiO2@CeO2 catalyst,” Fuel, vol. 291, 2021. [69] N. L. T. Boonamnuay, S. Assabumrungrat, P. Kim-Lohsoontorn, “Effect 3A and 5A molecular sieve on alcohol-assisted methanol synthesis from CO2 and H2 over Cu/ZnO catalyst,” International Journal of Hydrogen Energy, vol. 46, no. 60, pp. 30948-30958, 2021. [70] D. C.-G. Jorge Alejandro Torres-Ochoa, Orlando Cortazar-Martinez, Mariela Bravo-Sanchez, Gustavo Gomez-Sosa, Alberto Herrera-Gomez, “Peak-fitting of Cu 2p photoemission spectra in Cu0, Cu1+, and Cu2+ oxides: A method for discriminating Cu0 from Cu1+,” Appl. Surf. Sci., vol. 622, 2023. [71] M. A. V. T. Ghodselahi, A. Shafiekhani, A. Baghizadeh, M. Lameii, “XPS study of the Cu@Cu2O core-shell nanoparticles,” Appl. Surf. Sci., vol. 255, pp. 2730-2734, 2008. [72] S. Z. Qinan Song, Xiaoshu Hou, Jiacheng Li, Lei Yang, Xiang Liu, Miao Li, “Efficient electrocatalytic nitrate reduction via boosting oxygen vacancies of TiO2 nanotube array by highly dispersed trace Cu doping,” Journal of Hazardous Materials, vol. 438, 2022. [73] G. Schön, “ESCA studies of Cu, Cu2O and CuO,” Surface Science, vol. 35, pp. 96-108, 1973. [74] A. C. S. Víctor-Hugo Castrejón-Sánchez, Roberto López, Cecilia Encarnación-Gomez, Francisco Morales Morales, Orlando Soriano Vargas, Jorge Edmundo Mastache-Mastache and Gerardo Villa Sánchez, “Thermal oxidation of copper over a broad temperature range: towards the formation of cupric oxide (CuO),” Mater. Res. Express, vol. 6, no. 7, 2019. [75] J. A. R. Jae Y. Kim, Jonathan C. Hanson, Anatoly I. Frenkel, and Peter L. Lee, “Reduction of CuO and Cu2O with H2: H Embedding and Kinetic Effects in the Formation of Suboxides,” J. Am. Chem. Soc., vol. 125, no. 35, pp. 10684-10692, 2003. [76] P. L. L. T.L Reitz, K.F Czaplewski, J.C Lang, K.E Popp a, H.H Kung, “Time-Resolved XANES Investigation of CuO/ZnO in the Oxidative Methanol Reforming Reaction,” Journal of Catalysis, vol. 199, no. 2, pp. 193-201, 2001. [77] J. Y. K. Jose´ A. Rodriguez, Jonathan C. Hanson, Manuel Pe´rez, Anatoly I. Frenkel, “Reduction of CuO in H2: in situ time-resolved XRD studies,” Catalysis Letters, vol. 85, no. 3-4, pp. 247-254, 2003. [78] Y. S. Ubong J. Etim, Ziyi Zhong, “Improving the Cu/ZnO-Based Catalysts for Carbon Dioxide Hydrogenation to Methanol, and the Use of Methanol As a Renewable Energy Storage Media,” Front. Energy Res., vol. 8, 2020. [79] L. W. Chenchen Zhang, Ubong Jerome Etim, Yibing Song, Oz M. Gazit, Ziyi Zhong “Oxygen vacancies in Cu/TiO2 boost strong metal-support interaction and CO2 hydrogenation to methanol,” J. Catal., vol. 413, pp. 284-296, 2022. [80] D. J. W. Nicholas F. Dummer, Qian He, Mark J. Howard, Richard J. Lewis, Guodong Qi, Stuart H. Taylor, Jun Xu, Don Bethell, Christopher J. Kiely, and Graham J. Hutchings, “Methane Oxidation to Methanol,” Chem. Rev. , vol. 123, no. 9, pp. 6359–6411, 2023. [81] P. R. Zhijun Zuo, Sanjaya Senanayake, Ping Liu, Jose Rodriguez, “The Low-Temperature Conversion of Methane to Methanol on CeOx/Cu2O catalysts: Water Controlled Activation of the C-H Bond,” Journal of the American Chemical Society, vol. 138, no. 42, 2016. [82] S. L. Yanhui Yi, Zhaolun Cui, Yingzi Hao, Yang Zhang, Li Wang, Pei Liu, Xin Tu, Xianming Xu, Hongchen Guo, Annemie Bogaerts, “Selective oxidation of CH4 to CH3OH through plasma catalysis: Insights from catalyst characterization and chemical kinetics modelling,” Applied Catalysis B: Environmental, vol. 296, 2021. [83] Z. C. Na Cao, Ketao Zang, Jie Xu, Jun Zhong, Jun Luo, Xin Xu, Gengfeng Zheng, “Doping strain induced bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation,” Nat. Commun., vol. 10, 2019. [84] Y. W. Xiuxiu Wang, Chunliang Yang, Yun Yi, Xiaodan Wang, Fei Liu, Jianxin Cao, Hongyan Pan, “A novel microreaction strategy to fabricate superior hybrid zirconium and zinc oxides for methanol synthesis from CO2,” Applied Catalysis A: General, vol. 595, 2020. [85] G. B. Kim Taeyoon, Seungmo Yang, Jung Yup Yang, Kap Soo Yoon, Soo Gil Kim, Jae Yeon Lee, Hyun Sik Im, Jin Pyo Hong, “Exploring oxygen-affinity-controlled TaN electrodes for thermally advanced TaOx bipolar resistive switching,” Scientific Reports, vol. 8, 2018. [86] H. Y. Yifan Ye, Jin Qian, Hongyang Su, Kyung-Jae Lee, Tao Cheng, Hai Xiao, Junko Yano, William A. Goddard III, Ethan J. Crumlin “Dramatic differences in carbon dioxide adsorption and initial steps of reduction between silver and copper,” Nat. Commun., vol. 10, 2019. [87] J. K. Julia Schumann, Elias Frei, Robert Schlögl, Annette Trunschke, “IR-Spectroscopic Study on the Interface of Cu-Based Methanol Synthesis Catalysts: Evidence for the Formation of a ZnO Overlayer,” Top. Catal., vol. 60, pp. 1735-1743, 2017. [88] J. P. Łukasz Kuterasiński, Dorota Rutkowska-Zbik, Jerzy Datka, “IR Studies of the Cu Ions in Cu-Faujasites,” Molecules, vol. 24, no. 23, 2019. [89] M. Ś. K. Samson, R. P. Socha, K. Góra-Marek, D. Mucha, D. Rutkowska-Zbik, J-F. Paul, M. Ruggiero-Mikołajczyk, R. Grabowski, and J. Słoczyński, “Influence of ZrO2 Structure and Copper Electronic State on Activity of Cu/ZrO2 Catalysts in Methanol Synthesis from CO2,” ACS Catal., vol. 4, no. 10, pp. 3730–3741, 2014. [90] W. B. Zhang Riguang, Ling Lixia, Liu Hongyan, Huang Wei, “Adsorption and dissociation of H2 on the Cu2O(111) surface. A density functional theory study,” Appl. Surf. Sci., vol. 257, no. 4, pp. 1175-1180, 2010. [91] P. H. Yalan Wang, Jia Yang, Yi-An Zhu, De Chen, “C–H bond activation in light alkanes: a theoretical perspective,” Chemical Society Reviews, vol. 50, no. 7, pp. 4299-4358, 2021. [92] Z.-Y. L. Yan-Xia Zhao, Yuan Yang, and Sheng-Gui He, “Methane Activation by Gas Phase Atomic Clusters,” Acc. Chem. Res., vol. 51, no. 11, pp. 2603–2610, 2018. [93] Y.-X. Z. Hai-Fang Li, Zhen Yuan, Qing-Yu Liu, Zi-Yu Li, Xiao-Na Li, Chuan-Gang Ning, Sheng-Gui He, “Methane Activation by Tantalum Carbide Cluster Anions Ta2C4–,” J. Phys. Chem. Lett., vol. 8, no. 3, pp. 605–610, 2017. [94] N. C. Yongjun Liu, Penglong Jia, and Wei Huang, “In-Situ FT-IR Spectroscopy Investigation of CH4 and CO2 Reaction,” Catalysts, vol. 10, no. 1, 2020. [95] L. F. B. Lola Azancot, Miguel A. Centeno, Jose A. Odriozola “IR spectroscopic insights into the coking-resistance effect of potassium on nickel-based catalyst during dry reforming of methane ” Applied Catalysis B: Environmental, vol. 285, pp. 119822, 2021. [96] V. L. G. Busca, “Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces,” Materials Chemistry, vol. 7, no. 1, pp. 89-126, 1982. [97] J. F. E. a. G. L. Schrader, “Infrared Spectroscopy of Cu/ZnO Catalysts for the Water-Gas Shift Reaction and Methanol Synthesis,” The Journal of Physical Chemistry, vol. 88, no. 23, pp. 5620-5624, 1984. [98] M. R. A. B. Siti Kholijah Abdul Mudalip, Fatmawati Adam, and Parveen Jamal “Structures and Hydrogen Bonding Recognition of Mefenamic Acid Form I Crystals in Mefenamic Acid/Ethanol Solution ” International Journal of Chemical Engineering and Applications, vol. 4, no. 3, pp. 124-128, 2013. [99] S. C. Coldea Teodora, Fetea Florinela, Ranga Floricuta, Pop Raluca, Florea Mira. , “Rapid Quantitative Analysis of Ethanol and Prediction of Methanol Content in Traditional Fruit Brandies from Romania, using FTIR Spectroscopy and Chemometrics,” Notulae Botanicae Horti Agrobotanici Cluj-Napoca, vol. 41, pp. 143-149, 2013. [100] P. D. M. H. Niki, C.M. Savage, L.P. Breitenbach, “Further IR spectroscopic evidence for the formation of CH2(OH)OOH in the gas-phase reaction of HO2 with CH2O,” Chemical Physics Letters, vol. 75, no. 3, pp. 533-535, 1980. [101] C.-L. D.-T. Jennifer A. Schott, Weida Shan, Nicolette G. Puskar, Sheng Dai, Shannon M. Mahurin, “FTIR investigation of the interfacial properties and mechanisms of CO2 sorption in porous ionic liquids,” Green Chemical Engineering, vol. 2, no. 4, pp. 392-401, 2021. [102] B. A. T. Clarke D.B., “An Infrared Study of Methanol Synthesis from CO2 on Clean and Potassium-Promoted Cu/SiO2,” Journal of Catalysis, vol. 154, no. 2, pp. 314-328, 1995. [103] B. C. Smith, “The C=O Bond, Part II: Aldehydes,” Spectroscopy, vol. 32, no. 11, pp. 28-34, 2017. [104] J. V. Thorsten Schnabel, Hans Hasse, "Erratum to Henry's law constants of methane, nitrogen, oxygen and carbon dioxide in ethanol from 273 to 498 K: Prediction from molecular simulation" Fluid Phase Equilib., vol. 239, pp. 134-143, 2005. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93033 | - |
| dc.description.abstract | 二氧化碳的過度排放導致其在大氣中的濃度過高,是全球急需解決的議題。解決這個問題的其中一種方法是回收並重複使用二氧化碳,將其轉換為甲醇等高附加值的產品。作為二氧化碳排放來源之一的工業廢煙氣中,除了二氧化碳,還含有各種雜質,如甲烷是廢煙氣中常見的雜質。本研究使用了含甲烷的模擬煙氣作為甲醇生產原料,探討銅鋅氧化物(Cu/ZnO)觸媒對反應的影響,並使用乙醇作為催化溶劑,使觸媒在相對低的反應溫度下,達到較高的二氧化碳轉化率及較高的甲醇產率。本研究探討了甲醇合成的最佳操作溫度,以及進料端添加甲烷對產物的影響。研究結果顯示,在150°C時,可以在甲醇和副產物的生成取得最佳平衡。相比於其餘較高的反應溫度,在該溫度下能產生較少的副產物乙酸乙酯,從而降低後續分離程序的困難度。此外,研究結果亦顯示添加少量的甲烷可以提高甲醇產率;在氣體混合物中添加相當於總壓力1%的甲烷,可以在150°C下達到79%的二氧化碳轉化率和33% 的甲醇產率。藉由XRD、XPS和原位紅外線光譜(in-situ IR)等鑑定,推測在乙醇輔助二氧化碳和氫氣合成甲醇的反應中,甲烷可能作為還原劑,避免了Cu+ 和Cu2+ 的生成,有助於銅鋅氧化物觸媒維持在最有效的Cu0價態,減少了觸媒表面上銅氧化物。 | zh_TW |
| dc.description.abstract | The problem of CO2 emissions into the atmosphere is an issue that needs to be addressed worldwide. One of the ways to tackle this problem is to bring back CO2 and reuse it to produce higher-valued products like methanol. Nevertheless, exhausted gases emitted from many industries contain not only CO2 but also various impurities, of which CH4 is a common one. In this work, the simulated flue gas containing CH4 impurity was studied to examine its effect as the feed on the methanol production over Cu/ZnO catalyst, in the presence of ethanol as the catalytic solvent to enhance the conversion of CO2 and the yield of methanol while reducing the temperature required for synthesis. This study investigated the optimal operating temperatures for methanol production and the impact of CH4 variation in the feed. It was found that operating at 150°C achieved the best compromise between methanol production and addressing the practical challenge of unwanted by-product formation, specifically ethyl acetate, since this temperature was determined to produce less formation of ethyl acetate compared to higher temperatures, thereby reducing the complexity of separation processes. Additionally, the addition of a small amount of CH4 led to an increased methanol yield; the presence of 1% CH4 of total pressure of the gas mixture resulted in 79% CO2 conversion and 33% methanol yield at 150°C. This is attributed to CH4 potentially acting as a reducing agent, supported by characterization results, particularly from XRD, XPS, and in-situ infrared (IR) studies. This aids in maintaining the catalyst in its most efficient form, Cu0, during ethanol-assisted methanol synthesis from CO2 and H2, by mitigating the formation of copper oxides, including Cu1+ and Cu2+, on the catalyst surface. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-12T16:22:21Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-12T16:22:21Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgement ii
摘要 iii Abstract iv Table of Contents v List of Figures vii List of Tables ix Chapter 1 Introduction 1 1.1 Background 1 1.2 Research objectives 4 1.3 Research scope 4 Chapter 2 Literature review 6 2.1 Conventional methanol production method 6 2.2 Synthesizing methanol through the CO2 hydrogenation 9 2.3 Alcohol-assisted methanol synthesis 11 2.4 The parameters for methanol synthesis using the alcohol-assisted method 13 2.5 Limitation in raw materials issue 17 Chapter 3 Methodology 21 3.1 Catalyst preparation 21 3.2 The Ethanol-assisted Methanol production from CO2 hydrogenation 22 3.3 Catalyst characterization 24 3.4 In-situ infrared (IR) spectrometer study 25 Chapter 4 Results and Discussion 27 4.1 CO2 conversion and methanol yield at different operating temperature 27 4.2 CO2 conversion and methanol yield at different CH4 composition 31 4.3 Characterization Results 33 4.4 Investigating oxygen vacancy formation and associated mechanisms through in-situ IR Study 39 Chapter 5 Conclusion 51 Chapter 6 Future work 52 References 53 Appendix 67 Example of CO2 conversion and methanol yield calculation 67 1. Calculation of CO2 conversion 68 2. Calculation of methanol yield 70 Vita 72 | - |
| dc.language.iso | en | - |
| dc.subject | 二氧化碳轉化 | zh_TW |
| dc.subject | 甲烷雜質 | zh_TW |
| dc.subject | 二氧化碳再利用 | zh_TW |
| dc.subject | 酒精輔助方法 | zh_TW |
| dc.subject | 甲醇 | zh_TW |
| dc.subject | 銅鋅氧化物 | zh_TW |
| dc.subject | Carbon dioxide utilization | en |
| dc.subject | Alcohol-assisted method | en |
| dc.subject | Methanol | en |
| dc.subject | CH4 impurity | en |
| dc.subject | Copper Zinc Oxide | en |
| dc.subject | CO2 conversion | en |
| dc.title | 甲烷雜質對於Cu/ZnO觸媒在乙醇協助二氧化碳氫化生成甲醇反應的影響 | zh_TW |
| dc.title | Effect of CH4 impurity on ethanol-assisted methanol synthesis from CO2 and H2 over Cu/ZnO catalyst | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | Pattaraporn Kim-Lohsoontorn | zh_TW |
| dc.contributor.coadvisor | Pattaraporn Kim-Lohsoontorn | en |
| dc.contributor.oralexamcommittee | 吳紀聖;Pongtorn Charoensuppanimit;Artiwan Shotipruk | zh_TW |
| dc.contributor.oralexamcommittee | Jeffrey Chi-Sheng Wu;Pongtorn Charoensuppanimit;Artiwan Shotipruk | en |
| dc.subject.keyword | 二氧化碳再利用,二氧化碳轉化,甲醇,酒精輔助方法,銅鋅氧化物,甲烷雜質, | zh_TW |
| dc.subject.keyword | Carbon dioxide utilization,CO2 conversion,Methanol,Alcohol-assisted method,Copper Zinc Oxide,CH4 impurity, | en |
| dc.relation.page | 72 | - |
| dc.identifier.doi | 10.6342/NTU202401455 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 3.12 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
