請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93031
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 謝尚賢 | zh_TW |
dc.contributor.advisor | Shang-Hsien Hsieh | en |
dc.contributor.author | 謝文龍 | zh_TW |
dc.contributor.author | Edwin Shiady | en |
dc.date.accessioned | 2024-07-12T16:21:47Z | - |
dc.date.available | 2024-07-13 | - |
dc.date.copyright | 2024-07-12 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-11 | - |
dc.identifier.citation | 1. United States Bureau of Labor Statistics. (2023). Construction deaths due to falls, slips, and trips increased 5.9 percent in 2021. https://www.bls.gov/opub/ted/2023/construction-deaths-due-to-falls-slips-and- trips-increased-5-9-percent-in-2021.htm
2. Xu, Q., Xu, K. (2021). Analysis of the Characteristics of Fatal Accidents in the Construction Industry in China Based on Statistical Data. International Job Environment Reservation Public Health. 18(4): 2162. doi: 10.3390/ijerph18042162 3. Taiwan Occupational Safety and Health Administration, Ministry of Labor. (2023). Annual Report of Labor Inspection Statistics in 2022. https://www.osha.gov.tw/48783/48784/48845/48847/155008/post 4. Japan Industrial Safety and Health Association. (2021). Industrial Accidents Statistics in Japan (2021). https://www.jisha.or.jp/english/statistics/accidents_in_detail_2021.html#f07 5. United States Department of Labor. Occupational Safety & Health Administration (OSHA). OSHA Quick Card. Top Four Construction Hazards. https://www.osha.gov/Publications/3216-6N-06-english-06-27- 2007.html. 6. United States Department of Labor. Occupational Safety & Health Administration (OSHA). Frequently Cited OSHA Standards Results. NAICS Code: 236 Construction of Buildings. Establishment Size: ALL sizes. https://www.osha.gov/ords/imis/citedstandard.naics?p_naics=236&p_esize=&p_st ate=FEFederal 7. Swuste, P., Frijters, A., Guldenmund, F. (2012). Is it possible to influence safety in the building sector?: A literature review extending from 1980 until the present. Safety Science, 50(5), 1333-1343. https://doi.org/10.1016/j.ssci.2011.12.036. 8. Driscoll, T.R., Harrison, J.E., Bradley, C., & Newson, R.S. (2008). The Role of Design Issues in Work-Related Fatal Injury in Australia. Journal of Safety Research, 39, 209-214. 10.1016/j.jsr.2008.02.024 9. United States Department of Labor. Occupational Safety & Health Administration (OSHA). Job Hazard Analysis. (2002). OSHA 3071. https://www.osha.gov/sites/default/files/publications/osha3071.pdf 10. Mohamed, E., Jafari, P., Preira, E., Hague, S., AbouRizk, S., & Wales, R. (2019). Web-Based Job Hazard Assessment for Improved Safety-Knowledge Management in Construction. ISARC 2019, 493-500. DOI: 10.22260/ISARC2019/0066 11. Singh, S.P., Mansuri, L.E., Patel, D.A., & Chauhan, S. (2023). Harnessing BIM with risk assessment for generating automated safety schedule and developing application for safety training. Safety Science, 164. https://doi.org/10.1016/j.ssci.2023.106179. 12. B. D. Shivahare, A. K. Singh, N. Uppal, A. Rizwan, V. S. Vaathsav and S. Suman, "Survey Paper: Study of Natural Language Processing and its Recent Applications," 2022 2nd International Conference on Innovative Sustainable Computational Technologies (CISCT), Dehradun, India, 2022, pp. 1-5, doi: 10.1109/CISCT55310.2022.10046440. 13. Gao, B. (2022). Research and Implementation of Intelligent Evaluation System of Teaching Quality in Universities Based on Artificial Intelligence Neural Network Model. Mathematical Problems in Engineering, 2022(2):1-10. DOI: 10.1155/2022/8224184 14. Dundar, H.B., Dundar, O., Ocal, H., and Kocer, S. (2022). Use of IoT and Wearable Technology Design Fundamentals in Healthcare Industry. International Society for Research in Education Science (ISRES), Current Studies in Basic Sciences, Engineering and Technology 2022, pp.296. ISBN: 987-605-81654-2-7. 15. Luo, X., Li, X., Song, X., & Liu, Q. (2023). Convolutional Neural Network Algorithm-Based Automatic Text Classification Framework for Construction Accident Reports. Journal of Construction Engineering Management by ASCE, 149 (12). DOI: 10.1061/JCEMD4.COENG-13523. 16. Ballal, S., Patel, K.A., and Patel, D.A. (2023). Enhancing Construction Site Safety: Natural Language Processing for Hazards Identification and Prevention. Journal of Engineering, Project, and Production Management. 2024, 14(2), 0014, DOI 10.32738 17. Singh, I., Goyal, G., and Chandel, A. (2022). AlexNet architecture based convolutional neural network for toxic comments classification. Journal of King Saud University – Computer and Information Sciences 34 (2022). 7457-7558. https://doi.org/10.1016/j.jksuci.2022.06.007 18. Das, B., Chakraborty, S. (2018). An Improved Text Sentiment Classification Model Using TF-IDF and Next Word Negation. Institute of Electrical and Electronics Engineers. arXiv:1806.06407 19. Han, J., Kamber, M., &Pei, J. (2012). Data Mining (Third Edition). The Morgan Kaufmann Series in Data Management Systems, 2, 39-82. https://doi.org/10.1016/B978-0-12-381479-1.00002-2 20. Wang, H.H. & Boukamp, F. (2011). Ontology-Based Representation and Reasoning Framework for Supporting Job Hazard Analysis. Journal of Computing in Civil Engineering ASCE, 25(6), 442-456 21. Zhang, S., Teizer, J., & Boukamp, F. (2013). Automated Ontology-based Job Hazard Analysis (JHA) in Building Information Modelling (BIM). Engineering, Environmental Science, Computer Science, Corpus ID: 161052372 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93031 | - |
dc.description.abstract | 建築業多年來一直是工安死亡事故居高的行業之一。儘管企業和勞動部職業安全衛生署(Occupational Safety and Health Administration, OSHA)努力降低事故發生率,由OSHA記錄的違規案件仍居高不下。良好的安全規劃,尤其是在專案早期階段,是防止未來事故的必要條件。為了實現這一目標,多年來人們進行了大量的研究, 包括電腦視覺、建築資訊建模( Building Information Modeling, BIM)、規則化編程和自然語言處理(Natural Language Processing, NLP)的應用。這個研究的目的在於為施工排程建立一個危害識別系統,以便在專案早期階段識別危害。本研究方法選擇了詞頻-逆文檔頻率(Term Frequency – Inverse Document Frequency, TF-IDF)方法,並結合關鍵詞的映射,以創建 一個能夠識別危害類型、頻率和來源的模型。透過從排程中提取關鍵詞並將其作 為搜尋OSHA數據庫的輸入詞,TF-IDF能夠在事故的最終敘述中搜索到相關危害記 錄。根據模型在訓練和測試過程所獲得的閾值,最終敘述被篩選出來。總體來說,訓練和測試顯示的正向結果表明TF-IDF能夠在不犧牲精度的前提下展示危害的類 型和來源。這項研究將有助於更快速和精確的危害識別,並可作為進一步危害分 析的基礎。 | zh_TW |
dc.description.abstract | The construction industry is one of the industries that has contributed to a high number of work fatalities over the years. There have been numerous attempts to lower the number of accidents either by companies or Occupational Safety and Health Administration (OSHA). However, despite all the efforts to lower the number of casualties, the number of violations cited by OSHA is still high. Good safety planning is necessary, especially in the early stages of the project to prevent future accidents. To achieve this, much research has been done over the years, using technologies that range from computer vision, building information modeling (BIM), rule-based programming, and NLP. This research aims to create a hazard identification system based on a construction schedule so that the hazards can be identified in the early stages of the project by using NLP. The method chosen for this research is TF-IDF combined with mapping of the keywords in order to create a prototype that is able to identify the type of hazards, frequency of hazards, and source of hazards. By extracting the keywords from the schedule and using them as input in the OSHA Database, TF-IDF managed to search through the Final Narrative of accidents to find relevant hazards. The final narratives are then filtered out based on the threshold obtained from the training and testing process. Overall, the training and testing results show positively that TF-IDF is capable of showcasing types and sources of hazards without sacrificing the precision of the results. This research contributes to faster and more precise hazard identification that can later be used as a basis for further hazard analysis. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-12T16:21:46Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-12T16:21:47Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 摘要 ii
Abstract iii Table of Contents iv List of Figures vi List of Tables viii Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Research Objectives 3 1.3 Structure of Thesis 5 Chapter 2 Literature Review 7 2.1 State of Art 7 2.2 Safety Planning 9 2.2.1 Job Hazard Analysis 9 2.2.2 Safety Scheduling 11 2.3 Natural Language Processing 12 2.3.1 Natural Language Processing Introduction 12 2.3.2 Natural Language Processing Application in Construction Safety 13 Chapter 3 Methodology 16 3.1 Natural Language Processing Application 18 3.2 Similarity Score Calculation and Filtering 20 Chapter 4 Results 23 4.1 OSHA Database 23 4.2 Schedule Input and Keywords Extraction 25 4.3 TF-IDF 32 4.3.1 Setting Up TF-IDF 32 4.3.2 Similarity Score Calculation 35 4.4 Similarity Score Filtering 40 4.5 Frequency and Source Count 57 Chapter 5 Conclusion and Future Works 63 5.1 Conclusion 63 5.2 Future Works 65 References 67 | - |
dc.language.iso | en | - |
dc.title | 以自然語言處理方法自動識別施工排程中的危害 | zh_TW |
dc.title | Automated Hazard Identification in Construction Scheduling | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林耕宇;級乃文 | zh_TW |
dc.contributor.oralexamcommittee | Ken-Yu Lin;Nai-Wen Chi | en |
dc.subject.keyword | 危害識別,危害頻率,危害來源,安全規劃,自然語言處理,詞頻-逆文檔頻率(TF-IDF), | zh_TW |
dc.subject.keyword | Hazard Identification,Frequency of Hazard,Source of Hazard,Safety Planning,Natural Language Processing (NLP),Term Frequency-Inverse Document Frequency (TF-IDF), | en |
dc.relation.page | 69 | - |
dc.identifier.doi | 10.6342/NTU202401595 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-07-11 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 土木工程學系 | - |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 3.07 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。