請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93012
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐澔德 | zh_TW |
dc.contributor.advisor | J Bruce H SHYU | en |
dc.contributor.author | 何艾玲 | zh_TW |
dc.contributor.author | Aileen Eliza Hoyle | en |
dc.date.accessioned | 2024-07-12T16:16:20Z | - |
dc.date.available | 2024-07-13 | - |
dc.date.copyright | 2024-07-12 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-07 | - |
dc.identifier.citation | 英文文獻:
Agnew, D. C. (1997). NLOADF: A program for computing ocean-tide loading. Journal of Geophysical Research-Solid Earth, 102(B3), 5109-5110. https://doi.org/10.1029/96jb03458 Alam, E., & Dominey-Howes, D. (2014). An analysis of the AD1762 earthquake and tsunami in SE Bangladesh. Natural Hazards, 70(1), 903-933. https://doi.org/10.1007/s11069-013-0841-5 Allison, N., Finch, A. A., Webster, J. M., & Clague, D. A. (2007). Palaeoenvironmental records from fossil corals: The effects of submarine diagenesis on temperature and climate estimates. Geochimica et Cosmochimica Acta, 71(19), 4693-4703. https://doi.org/10.1016/j.gca.2007.07.026 Amante, C., & Eakins, B.W. (2009). ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5C8276M Briggs, R. W., Sieh, K., Meltzner, A. J., Natawidjaja, D., Galetzka, J., Suwargadi, B., Hsu, Y.-J., Simons, M., Hananto, N., Suprihanto, I., Prayudi, D., Avouac, J. P., Prawirodirdjo, L., & Bock, Y. (2006). Deformation and slip along the Sunda Megathrust in the great 2005 Nias-Simeulue earthquake. Science, 311(5769), 1897-1901. https://doi.org/10.1126/science.1122602 Chen, J.-H., Edwards, R. L., & Wasserburg, G. J. (1986). 238U, 234U and 232Th in Seawater. Earth and Planetary Science Letters, 80(3-4), 241-251. https://doi.org/10.1016/0012-821x(86)90108-1 Cheng, H., Edwards, R. L., Hoff, J., Gallup, C. D., Richards, D. A., & Asmerom, Y. (2000). The half-lives of uranium-234 and thorium-230. Chemical Geology, 169(1-2), 17-33. https://doi.org/10.1016/S0009-2541(99)00157-6 Cheng, H., Edwards, R. L., Shen, C.-C., Polyak, V. J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y.-J., Kong, X.-G., Spötl, C., Wang, X.-F., & Alexander, E. C. (2013). Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters, 371-372, 82-91. https://doi.org/10.1016/j.epsl.2013.04.006 Chiu, T.-C., Fairbanks, R. G., Mortlock, R. A., & Bloom, A. L. (2005). Extending the radiocarbon calibration beyond 26,000 years before present using fossil corals. Quaternary Science Reviews, 24(16-17), 1797-1808. https://doi.org/10.1016/j.quascirev.2005.04.002 Cobb, K. M., Charles, C. D., Cheng, H., Kastner, M., & Edwards, R. L. (2003). U/Th–dating living and young fossil corals from the central tropical Pacific. Earth and Planetary Science Letters, 210(1–2), 91–103. https://doi.org/10.1016/S0012-821X(03)00138-9 Cummins, P. R. (2007). The potential for giant tsunamigenic earthquakes in the northern Bay of Bengal. Nature, 449(7158), 75-78. https://doi.org/10.1038/nature06088 Curray, J. R. (1991). Possible Greenschist Metamorphism at the Base of a 22-Km Sedimentary Section, Bay of Bengal. Geology, 19(11), 1097-1100. https://doi.org/10.1130/0091-7613(1991)019%3C1097:PGMATB%3E2.3.CO;2 Curray, J. R., Emmel, F. J., & Moore, D. G. (2003). The Bengal Fan: morphology, geometry, stratigraphy, history and processes. Marine and Petroleum Geology, 19(10), 1191-1223. https://doi.org/10.1016/S0264-8172(03)00035-7 Curray, J. R. (2014). The Bengal Depositional System: From rift to orogeny. Marine Geology, 352, 59-69. https://doi.org/10.1016/j.margeo.2014.02.001 Edwards, R. L., Gallup, C. D., & Cheng, H. (2003). Uranium-series dating of marine and lacustrine carbonates. Uranium-Series Geochemistry, 52(1), 363-405. https://doi.org/10.2113/0520363 Esri. World Imagery [basemap]. Scale Not Given. "World Imagery". June 7, 2024. https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9 (June 18, 2024). Gulston, E. (1763). An Account of an Earthquake at Chattigaon: Translated from the Persian by Mr. Edward Gulston, in the Service of the Honourable East India Company, and Communicated by Him to the Reverend Mr. Hirst. Philosophical Transactions (1683-1775), 53, 251–256. http://www.jstor.org/stable/105728 Halsted, E. P. (1841). Report on the Island of Chedooba. Journal of the Asiatic Society. Bengal, New Series, 114(27), 419–436. Hiess, J., Condon, D. J., McLean, N., & Noble, S. R. (2012). 238U/235U Systematics in terrestrial uranium-bearing minerals. Science, 335(6076), 1610–1614. https://doi.org/10.1126/science.1215507 Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., & Essling, A. M. (1971). Precision Measurement of Half-Lives and Specific Activities of 235U and 238U. Physical Review C, 4(5), 1889-1906. https://doi.org/10.1103/PhysRevC.4.1889 Jevrejeva, S., Moore, J. C., Grinsted, A., Matthews, A. P., & Spada, G. (2014). Trends and acceleration in global and regional sea levels since 1807. Global and Planetary Change, 113, 11-22. https://doi.org/10.1016/j.gloplacha.2013.12.004 Kemp, A. C., Horton, B. P., Donnelly, J. P., Mann, M. E., Vermeer, M., & Rahmstorf, S. (2011). Climate related sea-level variations over the past two millennia. Proceedings of the National Academy of Sciences of the United States of America, 108(27), 11017-11022. https://doi.org/10.1073/pnas.1015619108 Le Dain, A. Y., Tapponnier, P., & Molnar, P. (1984). Active Faulting and Tectonics of Burma and Surrounding Regions. Journal of Geophysical Research, 89(B1), 453-472. https://doi.org/10.1029/JB089iB01p00453 Mallet, F.R. (1878). The mud volcanoes of Ramri and Cheduba. Records of the Geological Survey of India, 11(2), 188–207. McCaffrey, R. (2008). Global frequency of magnitude 9 earthquakes. Geology, 36(3), 263-266. https://doi.org/10.1130/g24402a.1 McGregor, H. V., & Abram, N. J. (2008). Images of diagenetic textures in Porites corals from Papua New Guinea and Indonesia. Geochemistry, Geophysics, Geosystems, 9(10). https://doi.org/10.1029/2008gc002093 McGregor, H. V., & Gagan, M. K. (2003). Diagenesis and geochemistry of Porites corals from Papua New Guinea. Geochimica et Cosmochimica Acta, 67(12), 2147-2156. https://doi.org/10.1016/s0016-7037(02)01050-5 Meltzner, A. J., Sieh, K., Chiang, H. W., Shen, C.-C., Suwargadi, B. W., Natawidjaja, D. H., Philibosian, B. E., Briggs, R. W., & Galetzka, J. (2010). Coral evidence for earthquake recurrence and an A.D. 1390–1455 cluster at the south end of the 2004 Aceh–Andaman rupture. Journal of Geophysical Research: Solid Earth, 115(B10). https://doi.org/10.1029/2010jb007499 Meltzner, A. J., Sieh, K., Chiang, H. W., Shen, C.-C., Suwargadi, B. W., Natawidjaja, D. H., Philibosian, B., & Briggs, R. W. (2012). Persistent termini of 2004‐ and 2005‐like ruptures of the Sunda megathrust. Journal of Geophysical Research: Solid Earth, 117(B4). https://doi.org/10.1029/2011jb008888 Meltzner, A. J., Sieh, K., Chiang, H.-W., Wu, C.-C., Tsang, L. L.H., Shen, C.-C., Hill, E. M., Suwargadi, B. W., Natawidjaja, D. H., Philibosian, B., & Briggs, R. W. (2015). Time-varying interseismic strain rates and similar seismic ruptures on the Nias–Simeulue patch of the Sunda megathrust. Quaternary Science Reviews, 122, 258-281. https://doi.org/10.1016/j.quascirev.2015.06.003 Milliman, J. D., & Meade, R. H. (1983). World-Wide Delivery of River Sediment to the Oceans. Journal of Geology, 91(1), 1-21. https://doi.org/10.1086/628741 Milliman, J. D., & Syvitski, J. P. M. (1992). Geomorphic Tectonic Control of Sediment Discharge to the Ocean - the Importance of Small Mountainous Rivers. Journal of Geology, 100(5), 525-544. https://doi.org/10.1086/629606 Minoura, K., Imamura, F., Sugawara, D., Kono, Y., & Iwashita, T. (2001), The 869 Jōgan tsunami deposit and recurrence interval of large-scale tsunami on the Pacific coast of Northeast Japan, Journal of Natural Disaster Science, 23(2), 83–88. Mondal, D. R., McHugh, C. M., Mortlock, R. A., Steckler, M. S., Mustaque, S., & Akhter, S. H. (2018). Microatolls document the 1762 and prior earthquakes along the southeast coast of Bangladesh. Tectonophysics, 745, 196-213. https://doi.org/10.1016/j.tecto.2018.07.020 Mori, N., Takahashi, T., Yasuda, T., & Yanagisawa, H. (2011). Survey of 2011 Tōhoku earthquake tsunami inundation and run-up. Geophysical Research Letters, 38. https://doi.org/10.1029/2011GL049210 Natawidjaja, D. H., Sieh, K., Chlieh, M., Galetzka, J., Suwargadi, B. W., Cheng, H., Edwards, R. L., Avouac, J. P., & Ward, S. N. (2006). Source parameters of the great Sumatran megathrust earthquakes of 1797 and 1833 inferred from coral microatolls. Journal of Geophysical Research-Solid Earth, 111(B6). https://doi.org/10.1029/2005JB004025 Natawidjaja, D. H., Sieh, K., Ward, S. N., Cheng, H., Edwards, R. L., Galetzka, J., & Suwargadi, B. W. (2004). Paleogeodetic records of seismic and aseismic subduction from central Sumatran microatolls, Indonesia. Journal of Geophysical Research: Solid Earth, 109(B4). https://doi.org/10.1029/2003jb002398 Nielsen, C., Chamot-Rooke, N., Rangin, C., & the ANDAMAN Cruise Team (2004). From partial to full strain partitioning along the Indo-Burmese hyper-oblique subduction. Marine Geology, 209(1-4), 303-327. https://doi.org/10.1016/j.margeo.2004.05.001 Okada, Y. (1985). Surface Deformation Due to Shear and Tensile Faults in a Half-Space. Bulletin of the Seismological Society of America, 75(4), 1135-1154. https://doi.org/10.1785/BSSA0750041135 Oldham, T. (1883). Catalogue of Indian Earthquakes. Memoirs of the Geological Survey of India, 19(3), 163-215. Philibosian, B., Sieh, K., Avouac, J. P., Natawidjaja, D. H., Chiang, H.-W., Wu, C.-C., Perfettini, H., Shen, C.-C., Daryono, M. R., & Suwargadi, B. W. (2014). Rupture and variable coupling behavior of the Mentawai segment of the Sunda megathrust during the supercycle culmination of 1797 to 1833. Journal of Geophysical Research: Solid Earth, 119(9), 7258-7287. https://doi.org/10.1002/2014jb011200 Philibosian, B., Sieh, K., Avouac, J. P., Natawidjaja, D. H., Chiang, H.-W., Wu, C.-C., Shen, C.-C., Daryono, M. R., Perfettini, H., Suwargadi, B. W., Lu, Y., & Wang, X. (2017). Earthquake supercycles on the Mentawai segment of the Sunda megathrust in the seventeenth century and earlier. Journal of Geophysical Research: Solid Earth, 122(1), 642-676. https://doi.org/10.1002/2016jb013560 Robinson, L. F., Belshaw, N. S., & Henderson, G. M. (2004). U and Th concentrations and isotope ratios in modern carbonates and waters from the Bahamas. Geochimica et Cosmochimica Acta, 68(8), 1777-1789. https://doi.org/10.1016/j.gca.2003.10.005 Rowley, D. B., & Currie, B. S. (2006). Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439(7077), 677-681. https://doi.org/10.1038/nature04506 Sayani, H. R., Cobb, K. M., Cohen, A. L., Elliott, W. C., Nurhati, I. S., Dunbar, R. B., Rose, K. A., & Zaunbrecher, L. K. (2011). Effects of diagenesis on paleoclimate reconstructions from modern and young fossil corals. Geochimica et Cosmochimica Acta, 75(21), 6361-6373. https://doi.org/10.1016/j.gca.2011.08.026 Scholz, D., & Mangini, A. (2007). How precise are U-series coral ages? Geochimica et Cosmochimica Acta, 71(8), 1935-1948. https://doi.org/10.1016/j.gca.2007.01.016 Scoffin, T. P., & Stoddart, D. R. (1978). Nature and Significance of Micro-Atolls. Philosophical Transactions of the Royal Society B-Biological Sciences, 284(999), 99- 122. https://doi.org/10.1098/rstb.1978.0055 Shen, C.-C., Edwards, R. L., Cheng, H., Dorale, J. A., Thomas, R. B., Moran, S. B., Weinstein, S. E., & Edmonds, H. N. (2002). Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chemical Geology, 185(3-4), 165-178. https://doi.org/10.1016/S0009-2541(01)00404-1 Shen, C.-C., Li, K.-S., Sieh, K., Natawidjaja, D., Cheng, H., Wang, X., Edwards, R. L., Lam, D. D., Hsieh, Y.-T., Fan, T.-Y., Meltzner, A. J., Taylor, F. W., Quinn, T. M., Chiang, H.-W., & Kilbourne, K. H. (2008). Variation of initial 230Th/232Th and limits of high precision U–Th dating of shallow-water corals. Geochimica et Cosmochimica Acta, 72(17), 4201-4223. https://doi.org/10.1016/j.gca.2008.06.011 Shen, C.-C., Wu, C.-C., Cheng, H., Lawrence Edwards, R., Hsieh, Y.-T., Gallet, S., Chang, C.-C., Li, T.-Y., Lam, D. D., Kano, A., Hori, M., & Spötl, C. (2012). High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols. Geochimica et Cosmochimica Acta, 99, 71-86. https://doi.org/10.1016/j.gca.2012.09.018 Shishikura, M., Okamura, Y., Satake, K., Fujino, S., Than Tin Aung, Win Swe, Win Naing, Hla Soe, Soe Thura Tun, Tin Lwin Swe, & Thura Aung. (2009), Geomorphological evidence of great Holocene earthquakes of western Myanmar. In Proceedings of the international workshop on Tsunami and storm surge hazard assessment and management for Bangladesh, 35-42. Shyu, J. B. H., Wang, C.-C., Wang, Y., Shen, C.-C., Chiang, H.-W., Liu, S.-C., Soe Min, Lin Thu Aung, Oo Than, & Soe Thura Tun. (2018). Upper-plate splay fault earthquakes along the Arakan subduction belt recorded by uplifted coral microatolls on northern Ramree Island, western Myanmar (Burma). Earth and Planetary Science Letters, 484, 241-252. https://doi.org/10.1016/j.epsl.2017.12.033 Sieh, K., Natawidjaja, D. H., Meltzner, A. J., Shen, C.-C., Cheng, H., Li, K.-S., Suwargadi, B. W., Galetzka, J., Philibosian, B., & Edwards, R. L. (2008). Earthquake supercycles inferred from sea-level changes recorded in the corals of West Sumatra. Science, 322(5908), 1674-1678. https://doi.org/10.1126/science.1163589 Singh, A., Bhushan, K., Singh, C., Steckler, M. S., Akhter, S. H., Seeber, L., Kim, W.-Y., Tiwari, A. K., & Biswas, R. (2016). Crustal structure and tectonics of Bangladesh: New constraints from inversion of receiver functions. Tectonophysics, 680, 99-112. https://doi.org/10.1016/j.tecto.2016.04.046 Socquet, A., Vigny, C., Chamot‐Rooke, N., Simons, W., Rangin, C., & Ambrosius, B. (2006). India and Sunda plates motion and deformation along their boundary in Myanmar determined by GPS. Journal of Geophysical Research: Solid Earth, 111(B5). https://doi.org/10.1029/2005jb003877 Steckler, M. S., Mondal, D. R., Akhter, S. H., Seeber, L., Feng, L., Gale, J., Hill, E. M., & Howe, M. (2016). Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges. Nature Geoscience, 9(8), 615-618. https://doi.org/10.1038/ngeo2760 Stirling, C. H., Esat, T. M., Mcculloch, M. T., & Lambeck, K. (1995). High-Precision U-Series Dating of Corals from Western-Australia and Implications for the Timing and Duration of the Last Interglacial. Earth and Planetary Science Letters, 135(1-4), 115-130. https://doi.org/10.1016/0012-821X(95)00152-3 Taylor, F. W., Frohlich, C., Lecolle, J., & Strecker, M. (1987). Analysis of Partially Emerged Corals and Reef Terraces in the Central Vanuatu Arc - Comparison of Contemporary Coseismic and Nonseismic with Quaternary Vertical Movements. Journal of Geophysical Research-Solid Earth and Planets, 92(B6), 4905-4933. https://doi.org/10.1029/JB092iB06p04905 Than Tin Aung, Satake, K., Okamura, Y., Shishikura, Win Swe, Hla Saw, Tint Lwin Swe, Soe Thura Tun, & Thura Aung. (2008). Geologic Evidence for Three Great Earthquakes in the Past 3400 Years Off Myanmar. Journal of Earthquake and Tsunami, 2(4), 259-265. https://doi.org/10.1142/S1793431108000335 Uddin, A., & Lundberg, N. (1999). A paleo-Brahmaputra? Subsurface lithofacies analysis of Miocene deltaic sediments in the Himalayan-Bengal system, Bangladesh. Sedimentary Geology, 123(3-4), 239-254. https://doi.org/10.1016/S0037-0738(98)00134-1 U.S. Army Map Service (GDVLB) (1955a). Kyaukpyu, Burma, Edition 1-AMS, 1:250,000, Series U542, U.S. Army, Washington D.C. U.S. Army Map Service (GDVLB) (1955b). Sandoway, Burma, Edition 1-AMS, 1:250,000, Series U542, U.S. Army, Washington D.C. Verelst. (1763). An Account of the Earthquakes That Have Been Felt in the Province of Islamabad, with the Damages Attending Them, from the 2d to the 19th of April, 1762: Translated from the Persian, and Communicated to Henry Vansittart, Esq; President and Governor of Fort William in Bengal, by Mr. Verelst, Chief of the Hon. East India Company’s Affairs at Islamabad. Philosophical Transactions (1683-1775), 53, 265–269. http://www.jstor.org/stable/105731 Wang, Y., Shyu, J. B. H., Sieh, K., Chiang, H.-W., Wang, C.-C., Thura Aung, Lin, Y.-N. N., Shen, C.-C., Soe Min, Oo Than, Lin, Kyaw Kyaw Lin & Soe Thura Tun. (2013). Permanent upper plate deformation in western Myanmar during the great 1762 earthquake: Implications for neotectonic behavior of the northern Sunda megathrust. Journal of Geophysical Research: Solid Earth, 118(3), 1277-1303. https://doi.org/10.1002/jgrb.50121 Wang, Y., Sieh, K., Tun, Soe Thura Tun, Lai, K.-Y., & Than Myint. (2014). Active tectonics and earthquake potential of the Myanmar region. Journal of Geophysical Research: Solid Earth, 119(4), 3767-3822. https://doi.org/10.1002/2013jb010762 Zachariasen, J., Sieh, K., Taylor, F. W., & Hantoro, W. S. (2000). Modem vertical deformation above the Sumatran subduction zone: Paleogeodetic insights from coral microatolls. Bulletin of the Seismological Society of America, 90(4), 897-913. https://doi.org/10.1785/0119980016 Zhang, P., Jiang, S.-Y., Donelick, R. A., Li, R., Soares, C. J., & Mei, L. (2022). Frontal expansion of an accretionary wedge under highly oblique plate convergence: Southern Indo-Burman Ranges, Myanmar. GSA Bulletin. https://doi.org/10.1130/b36560.1 中文文獻: 王崇哲(2013)。緬甸西南部蘭裏島之古地震事件研究(碩士論文,國立臺灣大學)。 劉司捷(2017)。利用珊瑚微型環礁探討緬甸西部蘭裏島之震間變形與地震週期(碩士論文,國立臺灣大學)。 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93012 | - |
dc.description.abstract | 緬甸西部外海的基督島(Cheduba Island)位於巽他大型逆衝帶(Sunda megathrust)變形前緣的東側,前人研究指出基督島與其鄰近的蘭裏島(Ramree Island)長期的變形行為,分別受控於底下的兩條隱沒帶分支斷層。在1762年阿拉干大地震中,巽他大型逆衝帶連同上部的分支斷層一起破裂,在這兩座島沿海留下了連續的海岸抬升紀錄。除了1762年的地震事件外,在蘭裏島北岸的珊瑚微型環礁(coral microatoll)也記錄下由單一條分支斷層破裂所造成的地區型地震事件。然而,現今仍未有研究討論基督島是否也經歷過類似的地區型地震事件。因此,本研究藉由基督島上抬升之珊瑚,重建1762年阿拉干大地震以及其他古地震事件造成的海岸變形,並探討基督島釋放應力的地震模式。
本研究利用鈾釷定年以及 RTK-GNSS 取得抬升之珊瑚的年代和高程資料,用以重建古地震事件的抬升量。根據抬升珊瑚的分布,1762年地震時平行基督島西部海岸線的抬升量由北至南遞減;在垂直西部海岸線的剖面中,抬升量分布與前人研究相似,符合基督島的背斜狀構造特徵。然而抬升量在全島的數值皆高於前人報導的結果,可能指示1762年大地震的滑移量在過去可能被低估。此外,本研究首次找到可能用來指示十七世紀地震的地質證據,這項發現與當地的口述傳說相符。根據珊瑚死亡事件群的時空分布,本研究推測這次地區型地震可能是由基督島北方的分支斷層獨自破裂所引發。基於這項新的地震紀錄,本研究認為基督島的地震模型為一雙峰模式,顯示分支斷層也具有獨自產生地震的孕震能力。然而,目前對於基督島的震間變形行為的暸解仍十分有限,這使得準確估算地區型地震事件的再現週期變得十分困難。未來應對於巽他大型逆衝帶投入更詳盡的古地震以及古測地研究,以有效預防未來地震發生時的災害。 | zh_TW |
dc.description.abstract | Cheduba Island is a major offshore island off the western coast of Myanmar and lies on the hanging-wall block of the Sunda megathrust. Previous studies indicate the long-term deformation behavior of Cheduba Island and its neighboring Ramree Island is controlled by two major upper-plate faults that splay off from the megathrust. During the 1762 Arakan earthquake, the Sunda megathrust ruptured along with two upper-plate splay faults, resulting in continuous coastal uplift along western Myanmar. Apart from the 1762 earthquake event, coral microatolls on the northern coast of Ramree Island have also recorded local events produced by the rupture of an upper-plate splay fault. However, whether Cheduba Island has experienced similar local earthquake events remains unknown. Therefore, in this study, we conducted paleoseismic investigations on Cheduba Island, aiming to reconstruct a more detailed earthquake history using uplifted corals.
This study utilizes uranium-thorium dating and RTK-GNSS to obtain the ages and elevation data of the uplifted corals to reconstruct coastal deformations of paleo-earthquake events. According to the distribution of uplifted corals, the uplift caused by the 1762 earthquake along the western coast of Cheduba Island decreases from north to south. Along the profile perpendicular to the western coast, the pattern of uplift closely resembles findings in previous studies, and is consistent with a major anticline structure beneath Cheduba Island. However, the amounts of uplift are higher than those previously reported across the island, indicating that the slip during the 1762 earthquake may have been underestimated. Furthermore, we found geological evidence for an earthquake in the early seventeenth century, consistent with oral historical records. Based on the spatiotemporal distribution of uplifted coral groups, this earthquake may have been a local event produced by the rupture of an upper-plate splay fault located offshore northwestern Cheduba Island. Based on this new earthquake record, this study proposes a bi-modal earthquake model for Cheduba Island. This model suggests that the upper-plate splay fault offshore western Cheduba Island is also capable of producing local earthquakes. However, since information about the interseismic deformation behavior on Cheduba Island is limited, it is difficult to accurately estimate the recurrence interval of these local earthquakes. In the future, it is necessary to conduct more comprehensive paleoseismic and paleogeodetic studies along the Sunda megathrust to effectively mitigate future earthquake disasters. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-12T16:16:20Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-12T16:16:20Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 I
摘要 III Abstract V 目次 VII 圖次 XI 表次 XV 第一章、前言 1 第一節、研究動機 1 第二節、研究區域 2 第三節、區域地質背景與前人研究 5 1.3.1 地體構造 5 1.3.2 1762年阿拉干大地震 9 1.3.2.1 歷史紀錄 9 1.3.2.2 地質證據 11 1.3.2.3 孕震構造 16 1.3.3 1848年地區型地震事件 18 1.3.4 地震模型與地震再現週期 21 1.3.4.1 典型地震模型 21 1.3.4.2 雙峰地震模型 21 第四節、研究目的 23 第二章、研究方法 25 第一節、古海水面指示生物 25 第二節、野外調查 28 2.2.1 樣本採集 29 2.2.2 地形高程測量 31 第三節、海階地形分析 31 2.3.1 高程資料校正 31 2.3.2 海階地形繪製 32 第四節、鈾釷定年 33 2.4.1 定年分析策略 33 2.4.2 樣本預處理步驟 37 2.4.3 礦物成分量化分析步驟 38 2.4.4 鈾釷定年分析步驟 38 第三章、研究結果 41 第一節、野外調查成果 41 3.1.1 基督島北岸 Myaw–Taw–Oo(MTO)地區 41 3.1.2 基督島北岸 Taung–Yin(DY)地區 49 3.1.3 基督島西岸中段 Ka–Ma(KM)地區 54 3.1.4 基督島西岸中段 Ka–Ma South(KM–S)地區 59 3.1.5 基督島西南岸 Ka–I(KI)地區 61 3.1.6 基督島南岸 Ka–I–South(KI–S)地區 64 3.1.7 基督島南岸 Sa–Chet(SC)地區 73 第二節、鈾釷定年分析結果 76 3.2.1 珊瑚骨骼的微構造結構 76 3.2.2 檢驗定年數據 77 3.2.3 定年年代分群 78 第四章、討論 83 第一節、本研究地震事件年代之可能誤差範圍 83 第二節、1762年阿拉干大地震之重建 85 4.2.1 指示 1762 年阿拉干大地震的珊瑚樣本 85 4.2.2 1762 年至2014年的相對海水面變化之重建 87 4.2.3 1762 年阿拉干大地震同震抬升狀況重建 90 第三節、十七世紀古地震事件之重建 97 4.3.1 十七世紀地震抬升量估計 98 4.3.2 十七世紀地震的破裂範圍及孕震構造模擬 100 第四節、1762年阿拉干大地震的前一次大型逆衝帶事件 104 第五節、以典型地震模型與雙峰地震模型來探討過去一千年以來基督島的變形行為 107 4.5.1 典型地震模型 107 4.5.2 雙峰地震模型 111 第五章、結論 114 參考文獻 115 附錄 125 附錄一、2014年野外樣本清單 125 附錄二、各地區海水面測量資料 127 後記 129 | - |
dc.language.iso | zh_TW | - |
dc.title | 利用抬升之珊瑚探討緬甸西部基督島的海岸變形與古地震事件 | zh_TW |
dc.title | Coastal Deformation and Paleo-earthquake Records Inferred from Uplifted Corals on Cheduba Island, Western Myanmar | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 王昱;李建成;郭昱廷;姜宏偉 | zh_TW |
dc.contributor.oralexamcommittee | Yu WANG;Jian-Cheng LEE;Yu-Ting KUO;Hong-Wei CHIANG | en |
dc.subject.keyword | 巽他大型逆衝帶,上盤分支斷層,鈾釷定年,1762年阿拉干大地震,海岸抬升, | zh_TW |
dc.subject.keyword | Sunda megathrust,upper-plate splay faults,U-Th dating,1762 Arakan earthquake,coastal uplift, | en |
dc.relation.page | 136 | - |
dc.identifier.doi | 10.6342/NTU202401276 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-07-08 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地質科學系 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 11.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。