請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93010
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曹恒偉 | zh_TW |
dc.contributor.advisor | Hen-Wai Tsao | en |
dc.contributor.author | 陳長泉 | zh_TW |
dc.contributor.author | Chang-Cyuan Chen | en |
dc.date.accessioned | 2024-07-12T16:15:45Z | - |
dc.date.available | 2024-07-13 | - |
dc.date.copyright | 2024-07-12 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-10 | - |
dc.identifier.citation | [1] Shure, “How does echo cancellation work during a video con ference?” 2017. [Online]. Available: https://www.shure.com/en US/conferencing-meetings/ignite/how-does-echo-cancellation-work during-a-video-conference (Accessd on: 2023/05/20).
[2] J. Benesty, T. Gänsler, D. R. Morgan, M. M. Sondhi, and S. L. Gay, Advances in network and acoustic echo cancellation. Springer, 2001. [3] S. H. Pauline, D. Samiappan, and R. Kumar, “Double talk detection in hands free mobile communication- a comprehensive survey,” Journal of Physics: Con ference Series, vol. 1964, 2021. [4] P. S. R. Diniz, “On data-selective adaptive filtering,” IEEE Transactions on Signal Processing, vol. 66, no. 16, pp. 4239–4252, 2018. [5] Y. Chien, C. Chen, and H. Tsao, “Robust fuzzy-based data-selective affine pro jection algorithm,” 2022 IEEE International Conference on Consumer Elec tronics - Taiwan, 2022. [6] M. Galarnyk, “Explaining the empirical rule for normal distribution,” 2022. [Online]. Available: https://builtin.com/data-science/empirical-rule (Accessd on: 2023/05/20). [7] S. S. Haykin, Adaptive filter theory. Pearson Education India, 2008. [8] D. L. Duttweiler, “Proportionate normalized least-mean-squares adaptation in echo cancelers,” IEEE Transactions on Speech and Audio Processing, vol. 8, no. 5, pp. 508–518, 2000. [9] K. Ozeki and T. Umeda, “An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties,” Electronics and Communi cations in Japan (Part I: Communications), vol. 67, no. 5, pp. 19–27, 1984. [10] F. Huang, J. Zhang, and S. Zhang, “Affine projection versoria algorithm for robust adaptive echo cancellation in hands-free voice communications,” IEEE Transactions on Vehicular Technology, vol. 67, no. 12, pp. 11 924–11 935, 2018. [11] X. Huang, Y. Li, Y. Zakharow, and B. Chen, “Affine-projection lorentzian algo rithm for vehicle hands-free rcho cancellation,” IEEE Transactions on Vehicular Technology, vol. 70, no. 3, pp. 2561–2575, 2021. [12] V. Djigan, “Multichannel acoustic echo canceller based on fast affine projection algorithm,” 2023 25th International Conference on Digital Signal Processing and its Applications (DSPA), 2023. [13] M. M. Sondhi, “The history of echo cancellation,” IEEE Signal Processing Magazine, vol. 23, no. 5, pp. 95–102, 2006. [14] M. M. Sondhi and D. Berkley, “Silencing echoes on the telephone network,” Proceedings of the IEEE, vol. 68, pp. 948–963, 1980. [15] M. M. Sondhi, “An adaptive echo canceler,” The Bell System Technical Journal, vol. 46, no. 3, pp. 497–511, 1967. [16] M. M. Sondhi and A. J. Presti, “A self-adaptive echo canceler,” The Bell System Technical Journal, vol. 45, no. 12, pp. 1851–1854, 1966. [17] K. Murano, S. Unagami, and F. Amano, “Echo cancellation and applications,” IEEE Communications Magazine, vol. 28, no. 1, pp. 49–55, 1990. [18] Y.-R. Chien and C.-H. Yu, “Impulse-noise-tolerant data-selective lms algo rithm,” IEICE TRANSACTIONS on Fundamentals of Electronics, Commu nications and Computer Sciences, vol. 105, no. 2, pp. 114–117, 2022. [19] M. Rages and K. C. Ho, “Limits on echo return loss enhancement on a voice coded speech signal,” Proc. IEEE Midwest Symp. on Circuits and Systems, vol. 2, pp. 152–155, 2002. [20] H. Zhao, Y. Gao, and Y. Zhu, “Robust subband adaptive filter algorithms-based mixture correntropy and application to acoustic echo cancellation,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 31, pp. 1223–1233, 2023. [21] P. S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation, 4th ed. New York, NY, USA: Springer, 2013. [22] M. V. S. Lima and P. S. R. Diniz, “Steady-state MSE performance of the set-membership affine projection algorithm,” Circuits Syst. Signal Process, vol. 32, pp. 1811–1837, 2013. [23] D. Wackerly, W. Mendenhall, and R. L. Scheaffer, Mathematical statistics with applications 7th. Thomson Brooks/Cole, 2008. [24] L. Yu, G. He, and A. K. Mutahir, “N-step sliding recursion formula of variance and its implementation,” Journal of Information Processing Systems, vol. 16, no. 4, pp. 832–844, 2020. [25] P. Papadopoulos, A. Tsiartas, J. Gibson, and S. Narayanan, “A supervised signal-to-noise ratio estimation of speech signals,” 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8237–8241, 2014. [26] “Digital network echo cancellers; itu-t recommendation g.168. 2012.” [Online]. Available: https://www.itu.int/rec/dologin_pub.asp?lang=f&id=T-REC-G.168-200701-S!!PDF-E&type=items (Accessd on: 2023/05/20). [27] S. Weinberger, “Speech accent archive. george mason university.” 2013. [Online]. Available: https://www.kaggle.com/datasets/rtatman/speech-accent archive?resource=download (Accessd on: 2023/05/20)(This datasets is distributed under a CC BY-NC-SA 2.0 license). [28] J. Denver, “John denver - take me home, country roads (of ficial audio).” [Online]. Available: https://www.youtube.com/watch?v=1vrEljMfXYopp=ygUMY291bnRyeSByb2Fk (Accessd on: 2023/05/20). | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93010 | - |
dc.description.abstract | 本論文針對線上會議與遠距通訊等經由網際網路的語音傳輸中經常發生的聲學回聲干擾問題,提出結合仿射投影演算法(Affine Projection, AP)與資料選擇法(Data Selective, DS)的動態臨界值資料選擇仿射投影演算法(Dynamic Thresholds Data Selective Affine Projection Adaptive, DT-DSAP)用以達成聲學回聲消除(Acoustic Echo Cancellation, AEC)工作。我們對 DS 的各臨界值作出嚴謹的討論,在誤差訊號、期望訊號以及輸入訊號方面,皆得出足以區分主要更新訊息、不具創新度訊息及異常值干擾的動態臨界值,幫助了演算法在系統處於追蹤時期使用較多的運算量發揮 AP 的快速追蹤特性,在穩態時期則節省運算量與增強強健性能,並且更有效的對語音訊號等具過小訊息量時間段特徵的輸入訊號進行處理。另一方面,我們以不獲取非更新訊息的方式將 DS 與 AP 結合,可解決既有結合方式可能造成的幾項重要問題,使演算法理想地發揮 DS 的效果。模擬結果分析討論了 DT-DSAP 在 AEC 應用中各臨界值的參數選擇與表現,結果顯示所設置臨界值可如預期的發揮各自功效。在與既有演算法的比較中,我們使用多種輸入訊號在不同強度的異常干擾情境進行 AEC 應用模擬,DT-DSAP 在收斂及追蹤速度、強健性能與運算量的節省展現出更佳的平衡與優勢。 | zh_TW |
dc.description.abstract | In this paper, we propose Dynamic Thresholds Data Selective Affine Projection (DT-DSAP), which combines Affine Projection (AP) and Data Selective (DS), to address the acoustic echo cancellation (AEC) problem often faced in voice transmis sion over the Internet. Our proposed DS method yields dynamic thresholds for error signals, desired signals, and input signals that are sufficient to distinguish between major updates, non-innovative signals, and abnormal interference. This helps the adaptive algorithm to utilize the fast tracking feature of the AP with more compu tation when the system is in tracking period. During steady state, the algorithm saves computation and enhances robust performance. In addition, the algorithm can efficiently process the input signals with the characteristics of the excessively small message volume time periods, such as voice signals. On the other hand, we propose to combine DS with AP in a way that does not acquire non-updated infor mation, which can solve several problems that would be caused by the established combination approach, and enable the algorithm to optimally utilize the effect of DS. In the simulation results, we examine the performance and parameter selection of DT-DSAP in AEC applications, and the results show that each threshold can perform as expected. In comparison with existing algorithms, we simulate AEC applications using multiple input signals in abnormal interference scenarios of different intensities. DT-DSAP shows a better balance of tracking speed, robustness, and computational savings. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-12T16:15:45Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-12T16:15:45Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目次 v 圖次 viii 表次 x 第一章 緒論 1 1.1 前言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 論文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 第二章 聲學回聲消除(AEC) 4 2.1 回聲干擾的產生原理 . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 線路回聲 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 聲學回聲 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 聲學回聲消除方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 通話相關者戴上耳機 . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.2 音場環境的材料處理 . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.3 回聲抑制器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.4 可適性濾波器的回聲消除 . . . . . . . . . . . . . . . . . . . . . 8 2.3 聲學回聲消除評估指標 . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 聲學回聲消除的相關演算法 . . . . . . . . . . . . . . . . . . . . . . 16 2.4.1 最小均方演算法(LMS)與歸一化最小均方演算法(NLMS) . 17 2.4.2 仿射投影演算法(AP) . . . . . . . . . . . . . . . . . . . . . . 18 2.4.3 仿射投影箕舌線演算法(APV) . . . . . . . . . . . . . . . . . 19 2.4.4 仿射投影洛倫茲演算法(APL) . . . . . . . . . . . . . . . . . . 20 第三章 資料選擇演算法文獻探討 23 3.1 資料選擇仿射投影(DSAP)演算法 . . . . . . . . . . . . . . . . . 23 3.1.1 DSAP 的資料選擇策略 . . . . . . . . . . . . . . . . . . . . . . . 24 3.1.2 DSAP 的資料選擇與 AP 演算法結合方法 . . . . . . . . . . . . 28 3.1.3 DSAP 演算法的不足之處 . . . . . . . . . . . . . . . . . . . . . 32 3.2 採模糊控制臨界值與誤差權重向量之資料選擇仿射投影演算法 . . . 36 3.2.1 模糊控制臨界值(FT) . . . . . . . . . . . . . . . . . . . . . . 36 3.2.2 誤差權重向量(EW) . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.3 FT-EW-DSAP 演算法的不足之處 . . . . . . . . . . . . . . . . . 39 3.3 具脈衝耐性之資料選擇最小均方演算法 . . . . . . . . . . . . . . . . 39 第四章 動態臨界值資料選擇仿射投影演算法 42 4.1 資料選擇策略之動態臨界值 . . . . . . . . . . . . . . . . . . . . . . 43 4.1.1 動態誤差訊號上臨界值 . . . . . . . . . . . . . . . . . . . . . . . 44 4.1.2 動態期望訊號臨界值 . . . . . . . . . . . . . . . . . . . . . . . . 52 4.1.3 輸入訊號臨界值 . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.1.4 動態誤差訊號下臨界值 . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 資料選擇法結合仿射投影演算法(AP)策略 . . . . . . . . . . . . . 58 4.2.1 過往文獻的應對重複使用策略 . . . . . . . . . . . . . . . . . . . 59 4.2.2 所提出的不獲取非更新資料點的應對重複使用策略 . . . . . . . 59 4.3 各演算法複雜度分析 . . . . . . . . . . . . . . . . . . . . . . . . . . 65 第五章 系統模擬結果分析 67 5.1 聲學回聲消除模擬環境 . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.2 DT-DSAP 資料選擇的方法與參數評估 . . . . . . . . . . . . . . . . 70 5.2.1 輸入訊號臨界值的設置 . . . . . . . . . . . . . . . . . . . . . . . 70 5.2.2 ρH 與 ρd 參數選擇討論 . . . . . . . . . . . . . . . . . . . . . . . 72 5.2.3 事前更新率 Pup 選擇討論 . . . . . . . . . . . . . . . . . . . . . 74 5.2.4 事前最大異常值發生率 P¯ in 與實際異常值發生率 Pin 討論 . . . 75 5.2.5 DT-DSAP 各臨界值的表現 . . . . . . . . . . . . . . . . . . . . 76 5.3 各演算法的聲學回聲消除模擬 . . . . . . . . . . . . . . . . . . . . . 78 5.3.1 模擬條件下的各演算法複雜度比較 . . . . . . . . . . . . . . . . 79 5.3.2 白高斯雜訊、AR-1 程序、及 AR-4 程序輸入訊號 . . . . . . . . 80 5.3.3 語音輸入訊號 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.3.4 音樂輸入訊號 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 第六章 結論與未來展望 91 6.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 參考文獻 94 | - |
dc.language.iso | zh_TW | - |
dc.title | 動態臨界值資料選擇仿射投影演算法運用於聲學回聲消除 | zh_TW |
dc.title | Dynamic Thresholds Data Selective Affine Projection Adaptive Algorithm For Acoustic Echo Cancellation | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 錢膺仁 | zh_TW |
dc.contributor.coadvisor | Ying-Ren Chien | en |
dc.contributor.oralexamcommittee | 劉俊麟;張大中 | zh_TW |
dc.contributor.oralexamcommittee | Chun-Lin Liu;Dah-Chung Chang | en |
dc.subject.keyword | 可適性濾波器,聲學回聲消除,資料選擇法,仿射投影,干擾抑制,回聲通道估計, | zh_TW |
dc.subject.keyword | Adaptive Filtering,Echo Cancellation,Data Selective,Affine Projection,Interference Suppression,Echo Channel Estimation, | en |
dc.relation.page | 97 | - |
dc.identifier.doi | 10.6342/NTU202401451 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-07-10 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電信工程學研究所 | - |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 3 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。