Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9297
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃秉鈞
dc.contributor.authorYu-Ping Linen
dc.contributor.author林于平zh_TW
dc.date.accessioned2021-05-20T20:16:27Z-
dc.date.available2014-07-16
dc.date.available2021-05-20T20:16:27Z-
dc.date.copyright2009-07-16
dc.date.issued2009
dc.date.submitted2009-07-06
dc.identifier.citation[1] S. Parekh, M. Farid J. Selman and S. Al-Hallaj, Solardesalination with a humidification–dehumidification technique — A comprehensive technical review.Desalination, 160 (2004) 167–186.
[2] Hassan E.S. Fath, Solar distillation : a promising alternative for water provision with free energy, simple technology and a clean environment, Desalination 116(1998)45-56.
[3] K. Bourouni, M.T. Chaibi, L. Tadrist, Water desalination by humidification and dehumidification of air : state of the art, Desalination 137(2001) 167-176.
[4] M.F. Goosen, S.S. Sablani, W.H. Shayya, C. Patonand H. Al-Hinai, Thermodynamic and economic consideration in solar desalination, Desalination, 129 (2000) 63–89.
[5] T. Nilsson, Initial experiments on dew collection in Sweden and Tanzania, Solar Energy Mat. Solar Cells, 40 (1996) 23–32.
[6] D.A. Beysens, I. Milimouk and V. Nikolayev, Dew recovery: old dreams and actual results, Proc. First International Conf. Fog and Fog Collection, Vancouver,Canada, 1998, pp. 269–272.
[7] M. Muselli, D. Beysens, J. Marcillat, I. Milimouk, T. Nilsson and A. Louche, dew water collector for potable water in Ajaccio (Corsica Island, France), Atmospheric Res., 64 (2002) 297–312.
[8] Badr A. Habeebullah, Potential use of evaporator coils for water extraction in hot and humid areas, Desalination 237(2009) 330-345
[9] E. Bar, Extraction of water from air, an alternative solution for water supply, Desalination, 165 (2004)335–342.
[10] H.I. Abualhamayel and P. Gandhidasan, An investigation of the feasibility study of renewable water sources, Final Report, KACST, Project no. AR-21- 62, King Abdulaziz City for Science and Technology, Riyadh, 2005, p. 224.
[11] R.V. Wahlgren, Atmospheric water vapor processor designs for potable water production, A eview, Water Res., 35(1) (2001) 1–22.
[12] Per Kare Krumsvik, Method and device for recovering water from a humid atmosphere, United states patent. No.5846296, 1996
[13] Wolfgang Markus, Method and apparatus for extracting water, United states patent. No.5729981,1995
[14] A.E. Kabeel, Application of sandy bed solar collector system for water extraction from the air, Internat. J. Energy Res., 30(6) (2006) 381–394.
[15] L.Z. Zhang, D.S. Zhu, X.H. Deng and B. Hua,Thermodynamic modeling of a novel air dehumidification system, Energy Buildings, 37 (2005) 279–286.
[16] D. Beysens, I. Milimouk, V. Nikolayev, M. Muselliand J. Marcillat, Using radiative cooling to condenseatmospheric vapor: a study to improve water yield,J. Hydrology, 276 (2003) 1–11.
[17] James J. Reldy, Potable water generator, United States Patent No.5149446 ,1991.
[18] James J. Reldy, Potable air-water generator, United States Patent No.5106512 ,1991.
[19] John Hutchinson, Apparatus and method for producing water from air, United States Patent, No.7000410, 2004.
[20] Amir Dragan, Kfar Sirkin Apparatus for extracting potable water from the environment air, United States Patent, No. 6644060, 2000
[21] Douglas J. Lloyd, Water generating machine, United States Patent, No.6490879.
[22] Walter Mehnert, Apparatus for extracting water from the atmosphere, United States Patent, No.4050262, 1979.
[23] Industrial Technology Research Institute –Photovoltaic Technology Center
[24] 孫輔笙: “高性能太陽光發電系統研究”,國立台灣大學機械工程學研究所
[25] M. Mattei, G. Notton*, C. Cristofari, M. Muselli, P. Poggi. Calculation of the polycrystalline PV module temperature using a simple method of energy balance. Renewable Energy 31 (2006) 553–567
[26] David L. King, Jay A. Kratochvil, and William E. Boyson. Temperature coefficients for PV modules and arrays: measurement methods, difficulties, and results
[27] K. Emery, J. Burdick, Y. Caiyem, D. Dunlavy, H. Field, B. Kroposki, T. Moriarty, L. Ottoson, S. Rummel, T. Strand, and M.W. Wanlass. Temperature dependence of photovoltaic cells, modules, and systems. National Renewable Energy Laboratory.
[28] Benemann J, Chehab O, Schaar-Gabriel E. Building-integrated PV modules. Sol Energy Mater Sol Cells. 2001;67:345–54.
[29] Bazilian M, Leenders F, Van Der Ree BGC, Prasad D. Photovoltaic cogeneration in the built environment. Sol Energy 2001;71:57–69.
[30] J.K. Tonui, Y. Tripanagnostopoulos. Improved PV/T solar collectors with heat extraction by forced or natural air circulation. Renewable energy 32 (2007) 623-637
[31] Y.B. Assoa, C. Menezo, G. Fraisse, R. Yezou, J. Brau. Study of a new concept of PVT hybrid collector. Solar energy 81 (2007) 1132-1143.
[32] J.K. Tonui, Y. Tripanagnostopoulos. Performance improvement of PV/T solar collectors with natural air flow operation. Solar energy 82 (2008) 1-12.
[33] B.J. Huang, Y.C. Liao, T.C. Kuo. Study of a new environmental chamber design. Applied Thermal Engineering, 27 (2007) 1967-1977
[34] RankH. Step response and frequency response method, automation, Vol.16 159-526, 1980.
[35] Majet M. Alhazmy, Minimum work requirement for water production in humidification-dehumidification desalination cycle, Desalination 214 (2007) 102-111.
[36] 顏仕銘, 獨立型移動式太陽能冰箱系統設計與控制研究,台大機械工程所
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9297-
dc.description.abstract本研究旨在開發空氣中取水的機制,藉由系統識別後的取水系統,控制其適當蒸發器凝結面溫度與通過凝結面風速,來達到最高的取水效率。除探討影響取水量的因素,亦進行戶外實測。本研究首先設計取水系統機構與熱泵系統,除設計可調角度以利太陽能板發電外,並將取水系統所排出之冷風吹至太陽能板。利用實驗進行取水系統動態模型識別,並以此模型進行控制系統的設計與分析,來控制蒸發器凝結面溫度接近露點。由模擬與實驗結果,在大氣溫度範圍25℃~35℃、相對溼度40%~80%、蒸發器風扇風速1.0m/s~3.5m/s間,控制效果良好,在三分鐘內皆可使凝結面溫度之控制誤差值小於0.5℃。本研究並進一步來探討蒸發器凝結面溫度與蒸發器風扇風速對取水量的影響。在實驗條件溫度範圍25℃~35℃、相對溼度40%~80%、蒸發器風扇風速1.0m/s~3.5m/s、dTset=2℃~6℃時,發現在凝結面溫度設在露點下4℃,風速設於2m/s時,取水的效率最高,達相對省電與高熱機效率。最後進行戶外實驗,結合太陽能發電能量管理系統與取水系統進行實測,結果發現,不論在晴天或雨天時,取水系統都能精確控制蒸發器凝結面溫度。在白天高溫與傍晚低溫時,比較兩者間COP、取水所需時間與耗電量,發現傍晚時取水系統有較佳表現。zh_TW
dc.description.abstractThis research is to develop water-capturing technique. Through system identification of water-capturing device, the condensed surface temperature of evaporator and the windspeed of the evaporator fan can be controlled to make the optimum water-capturing efficiency. First, the water-capturing device mechanisms and heat-pump system are designed for optimum operation. Second, by system identification, the system dynamic model can be obtained to design control parameters. From simulation results, the control can work well during the Ta=25℃~35℃, RH=40%~80%, wind speed of evaporator fan=1.0m/s~3.0m/s. And the error is less than 0.5℃ in 3 minutes.Third, within the Ta=25℃~35℃, RH=40%~80%, the system can reach the high water-capturing efficiency, power-saving and high COP when it operate at wind speed of evaporator fan 2.0m/s and the dTset=4℃.Finally, the outdoor experiments of the combination of PV power system and water-capturing system is done to verify its feasibility. From the experiment results, the whole system including PV power system and water-capturing system can work well day and night. And the whole system has the best performance when it works at night.en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:16:27Z (GMT). No. of bitstreams: 1
ntu-98-R96522802-1.pdf: 10195458 bytes, checksum: 3805924d25d286a3dc7a8ac36fd3a4e5 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目錄
致謝 I
中文摘要 II
英文摘要 III
目錄 IV
圖目錄 VI
表目錄 XII
符號說明 XIII
第一章 緒論 - 1 -
1.1 研究動機 - 1 -
1.2 文獻回顧 - 2 -
1.3 研究內容 - 5 -
第二章 取水系統設計 - 7 -
2.1 系統元件 - 7 -
2.2 系統設計與製作 - 15 -
第三章 動態取水系統識別 - 23 -
3.1 系統動態模型識別 - 23 -
3.2 實驗設計 - 29 -
3.3 系統識別結果與分析 - 34 -
第四章 控制系統設計分析與測試 - 55 -
4.1 回授控制系統 - 55 -
4.2 控制器參數設計 - 57 -
4.3 控制系統軟硬體設計 - 66 -
4.4 露點追蹤控制與系統抗干擾測試 - 70 -
4.5 鉛蓄電池供電電壓對壓縮機性能影響 - 73 -
4.6 系統操作下極限測試 - 74 -
第五章 最佳取水量實驗研究 - 93 -
5.1 最佳取水量之控制設定研究 - 93 -
5.1.1 dTset之影響 - 96 -
5.1.2 蒸發器風扇風速的影響 - 102 -
5.2 戶外控制研究 - 109 -
5.2.1 太陽能電池與充電控制 - 109 -
5.2.2 戶外實驗結果 - 112 -
第六章 討論與結論 - 116 -
6.1 討論 - 116 -
6.2 結論 - 117 -
6.3 未來展望 - 118 -
參考文獻 - 120 -
附錄A Rake’s Method - 123 -
附錄B Matlab of Rake’s Method - 126 -
附錄C Ziegler-Nichols - 132 -
dc.language.isozh-TW
dc.title利用太陽電池驅動壓縮機之空氣取水技術研究zh_TW
dc.titleCapturing water from air using solar PV-powered DC Compressoren
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顏瑞和,白先聲
dc.subject.keyword太陽能發電,熱泵系統,蒸發器風扇風速,蒸發器凝結面溫度,zh_TW
dc.subject.keywordPV power system,Heat Pump system,windspeed of evaporator fan,Condensed temperature of evaporator,en
dc.relation.page135
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-07-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf9.96 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved