請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92975完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃宇廷 | zh_TW |
| dc.contributor.advisor | Yu-tin Huang | en |
| dc.contributor.author | 陳昱睿 | zh_TW |
| dc.contributor.author | Yu-Jui Chen | en |
| dc.date.accessioned | 2024-07-10T16:07:46Z | - |
| dc.date.available | 2024-07-11 | - |
| dc.date.copyright | 2024-07-10 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-03 | - |
| dc.identifier.citation | [1] Y. F. Bautista, A. Guevara, C. Kavanagh, and J. Vines, “Scattering in black hole backgrounds and higher-spin amplitudes. Part II,” JHEP, vol. 05, p. 211, 2023.
[2] W. D. Goldberger and I. Z. Rothstein, “An Effective field theory of gravity for extended objects,” Phys. Rev. D, vol. 73, p. 104029, 2006. [3] W. D. Goldberger, “Les Houches lectures on effective field theories and gravita- tional radiation,” in Les Houches Summer School - Session 86: Particle Physics and Cosmology: The Fabric of Spacetime, 1 2007. [4] S. Foffa and R. Sturani, “Effective field theory methods to model compact binaries,” Class. Quant. Grav., vol. 31, no. 4, p. 043001, 2014. [5] I. Z. Rothstein, “Progress in effective field theory approach to the binary inspiral problem,” Gen. Rel. Grav., vol. 46, p. 1726, 2014. [6] R. A. Porto, “The effective field theorist’s approach to gravitational dynamics,” Phys. Rept., vol. 633, pp. 1–104, 2016. [7] M. Levi, “Effective Field Theories of Post-Newtonian Gravity: A comprehensive review,” Rept. Prog. Phys., vol. 83, no. 7, p. 075901, 2020. [8] Y. Iwasaki, “Quantum theory of gravitation vs. classical theory. - fourth-order potential,” Prog. Theor. Phys., vol. 46, pp. 1587–1609, 1971. [9] B. P. Abbott et al., “Binary Black Hole Mergers in the first Advanced LIGO Observing Run,” Phys. Rev. X, vol. 6, no. 4, p. 041015, 2016. [Erratum: Phys.Rev.X 8, 039903 (2018)]. [10] B. P. Abbott et al., “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett., vol. 116, no. 6, p. 061102, 2016. [11] D. Neill and I. Z. Rothstein, “Classical Space-Times from the S Matrix,” Nucl. Phys. B, vol. 877, pp. 177–189, 2013. [12] H. Kawai, D. Lewellen, and S.-H. Tye, “A relation between tree amplitudes of closed and open strings,” Nuclear Physics B, vol. 269, no. 1, pp. 1–23, 1986. [13] Z. Bern, J. J. M. Carrasco, and H. Johansson, “New Relations for Gauge-Theory Amplitudes,” Phys. Rev. D, vol. 78, p. 085011, 2008. [14] Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosower, “One loop n point gauge theory amplitudes, unitarity and collinear limits,” Nucl. Phys. B, vol. 425, pp. 217–260, 1994. [15] Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosower, “Fusing gauge theory tree amplitudes into loop amplitudes,” Nucl. Phys. B, vol. 435, pp. 59–101, 1995. [16] N. Arkani-Hamed, T.-C. Huang, and Y.-t. Huang, “Scattering amplitudes for all masses and spins,” JHEP, vol. 11, p. 070, 2021. [17] C. Cheung, I. Z. Rothstein, and M. P. Solon, “From Scattering Amplitudes to Classical Potentials in the Post-Minkowskian Expansion,” Phys. Rev. Lett., vol. 121, no. 25, p. 251101, 2018. [18] Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M. P. Solon, and M. Zeng, “Scat- tering Amplitudes and the Conservative Hamiltonian for Binary Systems at Third Post-Minkowskian Order,” Phys. Rev. Lett., vol. 122, no. 20, p. 201603, 2019. [19] Z. Bern, J. Parra-Martinez, R. Roiban, M. S. Ruf, C.-H. Shen, M. P. Solon, and M. Zeng, “Scattering Amplitudes, the Tail Effect, and Conservative Binary Dynamics at O(G4),” Phys. Rev. Lett., vol. 128, no. 16, p. 161103, 2022. [20] A. Buonanno, M. Khalil, D. O’Connell, R. Roiban, M. P. Solon, and M. Zeng, “Snowmass White Paper: Gravitational Waves and Scattering Amplitudes,” in Snowmass 2021, 4 2022. [21] M.-Z. Chung, Y.-T. Huang, and J.-W. Kim, “Classical potential for general spinning bodies,” JHEP, vol. 09, p. 074, 2020. [22] Z. Bern, A. Luna, R. Roiban, C.-H. Shen, and M. Zeng, “Spinning black hole binary dynamics, scattering amplitudes, and effective field theory,” Phys. Rev. D, vol. 104, no. 6, p. 065014, 2021. [23] A. Guevara, A. Ochirov, and J. Vines, “Scattering of Spinning Black Holes from Exponentiated Soft Factors,” JHEP, vol. 09, p. 056, 2019. [24] F. Febres Cordero, M. Kraus, G. Lin, M. S. Ruf, and M. Zeng, “Conserva- tive Binary Dynamics with a Spinning Black Hole at O(G3) from Scattering Amplitudes,” Phys. Rev. Lett., vol. 130, no. 2, p. 021601, 2023. [25] Z. Bern, D. Kosmopoulos, A. Luna, R. Roiban, and F. Teng, “Binary Dynamics through the Fifth Power of Spin at O(G2),” Phys. Rev. Lett., vol. 130, no. 20, p. 201402, 2023. [26] A. Ochirov and E. Skvortsov, “Chiral Approach to Massive Higher Spins,” Phys. Rev. Lett., vol. 129, no. 24, p. 241601, 2022. [27] M.-Z. Chung, Y.-T. Huang, J.-W. Kim, and S. Lee, “The simplest massive S-matrix: from minimal coupling to Black Holes,” JHEP, vol. 04, p. 156, 2019. [28] W.-M. Chen, M.-Z. Chung, Y.-t. Huang, and J.-W. Kim, “The 2PM Hamilto- nian for binary Kerr to quartic in spin,” JHEP, vol. 08, p. 148, 2022. [29] M. Chiodaroli, H. Johansson, and P. Pichini, “Compton black-hole scattering for s ≤ 5/2,” JHEP, vol. 02, p. 156, 2022. [30] L. Cangemi, M. Chiodaroli, H. Johansson, A. Ochirov, P. Pichini, and E. Skvortsov, “Kerr Black Holes Enjoy Massive Higher-Spin Gauge Symme- try,” 12 2022. [31] R. Aoude, K. Haddad, and A. Helset, “On-shell heavy particle effective theo- ries,” JHEP, vol. 05, p. 051, 2020. [32] R. Aoude, K. Haddad, and A. Helset, “Searching for Kerr in the 2PM ampli- tude,” JHEP, vol. 07, p. 072, 2022. [33] K. Haddad, “Recursion in the classical limit and the neutron-star Compton amplitude,” JHEP, vol. 05, p. 177, 2023. [34] R. Aoude, K. Haddad, and A. Helset, “Classical gravitational scattering am- plitude at O(G2S1∞S2∞),” Phys. Rev. D, vol. 108, no. 2, p. 024050, 2023. [35] N. E. J. Bjerrum-Bohr, G. Chen, and M. Skowronek, “Classical spin gravita- tional Compton scattering,” JHEP, vol. 06, p. 170, 2023. [36] N. E. J. Bjerrum-Bohr, G. Chen, and M. Skowronek, “Covariant Compton Amplitudes in Gravity with Classical Spin,” 9 2023. [37] R. A. Porto, “Post-Newtonian corrections to the motion of spinning bodies in NRGR,” Phys. Rev. D, vol. 73, p. 104031, 2006. [38] M. Levi and J. Steinhoff, “Spinning gravitating objects in the effective field theory in the post-Newtonian scheme,” JHEP, vol. 09, p. 219, 2015. [39] Z. Liu, R. A. Porto, and Z. Yang, “Spin Effects in the Effective Field Theory Approach to Post-Minkowskian Conservative Dynamics,” JHEP, vol. 06, p. 012, 2021. [40] M. Ben-Shahar, “Scattering of spinning compact objects from a worldline EFT,” 11 2023. [41] G. U. Jakobsen, G. Mogull, J. Plefka, and J. Steinhoff, “Gravitational Bremsstrahlung and Hidden Supersymmetry of Spinning Bodies,” Phys. Rev. Lett., vol. 128, no. 1, p. 011101, 2022. [42] G. U. Jakobsen, G. Mogull, J. Plefka, and J. Steinhoff, “SUSY in the sky with gravitons,” JHEP, vol. 01, p. 027, 2022. [43] M.-Z. Chung, Y.-T. Huang, and J.-W. Kim, “Kerr-Newman stress-tensor from minimal coupling,” JHEP, vol. 12, p. 103, 2020. [44] N. Arkani-Hamed, Y.-t. Huang, and D. O’Connell, “Kerr black holes as ele- mentary particles,” JHEP, vol. 01, p. 046, 2020. [45] D. Kosmopoulos and A. Luna, “Quadratic-in-spin Hamiltonian at O(G2) from scattering amplitudes,” JHEP, vol. 07, p. 037, 2021. [46] R. Aoude, K. Haddad, and A. Helset, “Tidal effects for spinning particles,” JHEP, vol. 03, p. 097, 2021. [47] W.-M. Chen, M.-Z. Chung, Y.-t. Huang, and J.-W. Kim, “Gravitational Fara- day effect from on-shell amplitudes,” JHEP, vol. 12, p. 058, 2022. [48] Y. F. Bautista, A. Guevara, C. Kavanagh, and J. Vines, “Scattering in black hole backgrounds and higher-spin amplitudes. Part I,” JHEP, vol. 03, p. 136, 2023. [49] C. R. T. Jones and M. S. Ruf, “Absorptive Effects and Classical Black Hole Scattering,” 9 2023. [50] A. A. Starobinskil and S. M. Churilov, “Amplification of electromagnetic and gravitational waves scattered by a rotating ”black hole”,” Sov. Phys. JETP, vol. 65, no. 1, pp. 1–5, 1974. [51] D. N. Page, “Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole,” Phys. Rev. D, vol. 13, pp. 198–206, 1976. [52] R. Aoude and A. Ochirov, “Classical observables from coherent-spin ampli- tudes,” JHEP, vol. 10, p. 008, 2021. [53] J.-W. Kim and M. Shim, “Quantum corrections to tidal Love number for Schwarzschild black holes,” Phys. Rev. D, vol. 104, no. 4, p. 046022, 2021. [54] R. Aoude and A. Ochirov, “Gravitational partial-wave absorption from scat- tering amplitudes,” 7 2023. [55] M. M. Ivanov and Z. Zhou, “Vanishing of Black Hole Tidal Love Numbers from Scattering Amplitudes,” Phys. Rev. Lett., vol. 130, no. 9, p. 091403, 2023. [56] R. Britto, F. Cachazo, B. Feng, and E. Witten, “Direct proof of tree-level recursion relation in Yang-Mills theory,” Phys. Rev. Lett., vol. 94, p. 181602, 2005. [57] J. M. Maldacena and A. Strominger, “Universal low-energy dynamics for ro- tating black holes,” Phys. Rev. D, vol. 56, pp. 4975–4983, 1997. [58] S. Endlich and R. Penco, “A Modern Approach to Superradiance,” JHEP, vol. 05, p. 052, 2017. [59] M. Sasaki and H. Tagoshi, “Analytic black hole perturbation approach to grav- itational radiation,” Living Rev. Rel., vol. 6, p. 6, 2003. [60] J. A. H. Futterman, F. A. Handler, and R. A. Matzner, SCATTERING FROM BLACK HOLES. Cambridge Monographs on Mathematical Physics, Cam- bridge University Press, 5 2012. [61] K. Glampedakis and N. Andersson, “Scattering of scalar waves by rotating black holes,” Class. Quant. Grav., vol. 18, pp. 1939–1966, 2001. [62] H. S. Chia, “Tidal deformation and dissipation of rotating black holes,” Phys. Rev. D, vol. 104, no. 2, p. 024013, 2021. [63] S. Weinberg, “Photons and gravitons in perturbation theory: Derivation of Maxwell’s and Einstein’s equations,” Phys. Rev., vol. 138, pp. B988–B1002, 1965. [64] Y.-T. Huang, U. Kol, and D. O’Connell, “Double copy of electric-magnetic duality,” Phys. Rev. D, vol. 102, no. 4, p. 046005, 2020. [65] W. T. Emond, Y.-T. Huang, U. Kol, N. Moynihan, and D. O’Connell, “Ampli- tudes from Coulomb to Kerr-Taub-NUT,” JHEP, vol. 05, p. 055, 2022. [66] J.-W. Kim and M. Shim, “Gravitational Dyonic Amplitude at One-Loop and its Inconsistency with the Classical Impulse,” JHEP, vol. 02, p. 217, 2021. [67] D. Li, A. Hussain, P. Wagle, Y. Chen, N. Yunes, and A. Zimmerman, “Isospec- trality breaking in the Teukolsky formalism,” 10 2023. [68] J.-W. Kim, M. Levi, and Z. Yin, “Quadratic-in-spin interactions at fifth post- Newtonian order probe new physics,” Phys. Lett. B, vol. 834, p. 137410, 2022. [69] J.-W. Kim, M. Levi, and Z. Yin, “N3LO quadratic-in-spin interactions for generic compact binaries,” JHEP, vol. 03, p. 098, 2023. [70] M. Levi and Z. Yin, “Completing the fifth PN precision frontier via the EFT of spinning gravitating objects,” JHEP, vol. 04, p. 079, 2023. [71] T. Damour and A. Nagar, “Relativistic tidal properties of neutron stars,” Phys. Rev. D, vol. 80, p. 084035, 2009. [72] T. Binnington and E. Poisson, “Relativistic theory of tidal Love numbers,” Phys. Rev. D, vol. 80, p. 084018, 2009. [73] B. Kol and M. Smolkin, “Black hole stereotyping: Induced gravito-static po- larization,” JHEP, vol. 02, p. 010, 2012. [74] S. Chakrabarti, T. Delsate, and J. Steinhoff, “New perspectives on neutron star and black hole spectroscopy and dynamic tides,” 4 2013. [75] N. Gu ̈rlebeck, “No-hair theorem for Black Holes in Astrophysical Environ- ments,” Phys. Rev. Lett., vol. 114, no. 15, p. 151102, 2015. [76] R. A. Porto, “The Tune of Love and the Nature(ness) of Spacetime,” Fortsch. Phys., vol. 64, no. 10, pp. 723–729, 2016. [77] L. Hui, A. Joyce, R. Penco, L. Santoni, and A. R. Solomon, “Static response and Love numbers of Schwarzschild black holes,” JCAP, vol. 04, p. 052, 2021. [78] P. Charalambous, S. Dubovsky, and M. M. Ivanov, “On the Vanishing of Love Numbers for Kerr Black Holes,” JHEP, vol. 05, p. 038, 2021. [79] P. Charalambous, S. Dubovsky, and M. M. Ivanov, “Hidden Symmetry of Van- ishing Love Numbers,” Phys. Rev. Lett., vol. 127, no. 10, p. 101101, 2021. [80] L. Hui, A. Joyce, R. Penco, L. Santoni, and A. R. Solomon, “Ladder symmetries of black holes. Implications for love numbers and no-hair theorems,” JCAP, vol. 01, no. 01, p. 032, 2022. [81] M. V. S. Saketh, Z. Zhou, and M. M. Ivanov, “Dynamical Tidal Response of Kerr Black Holes from Scattering Amplitudes,” 7 2023. [82] Y. F. Bautista and A. Guevara, “From Scattering Amplitudes to Classical Physics: Universality, Double Copy and Soft Theorems,” 3 2019. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92975 | - |
| dc.description.abstract | 本文使用不同質量的(自旋)粒子,建構出三點散射震幅,並用來描述黑洞吸收 過程的動力學。我們發現這樣的三點散射震幅,可以重現在圖科斯基方程裡出現 的特殊函數:自旋加權橢球諧函數。在這個等效的描述中,原本未知的「威爾森係數」的絕對值平方,可以透過和已知的吸收過程截面比對而得到。我們接著將 他應用於計算重力康普頓散射震幅中,源自於吸收過程的修正,並且在超極限的條件下,此修正量產生了參考資料[1]中,相依於非解析|a|的貢獻。 | zh_TW |
| dc.description.abstract | We utilize three point amplitudes with (spinning) particles of unequal mass and a graviton to capture the dynamics of black hole absorption processes. We demonstrate that the construction can represent the spheroidal harmonics appearing in the Teukolsky equations. The absolute square of the “Wilson coefficients” in this effective description can be fixed by matching to the known absorptive cross-sections. As an application, we compute corrections to the gravitational Compton amplitude from the exchange of states corresponding to such absorption effects. In the super- extremal limit, the corrections generate the non-analytic |a|-dependent contribution of the Compton amplitude found in ref. [1]. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-10T16:07:46Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-10T16:07:46Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii Acknowledgement iii 摘要 iv Abstract v List of figures viii 1 Introduction 1 2 Gravitational partial wave as an on-shell tensor 8 2.1 SphericaltensorsforSchwarzschildblackholes 10 2.2 Reviewofthecoherentspinformalism 11 2.3 SpheroidaltensorsforKerrblackholes 14 3 Matching to absorption cross section of spinning black hole 21 3.1 Calculationfromon-shellspheroidaltensor 22 3.2 Matchingtoclassicalabsorptioncrosssection 28 4 Compton amplitude of spinning black hole 33 4.1 Kinematicsetup 36 4.2 Compton amplitude from on-shell spheroidal tensor 38 5 Conclusion and outlook 44 A State sum for coherent spin states 47 B Equal-mass Compton amplitude from BCFW 52 C Unitarity and optical Theorem 56 C.1 UnitarityofSmatrix 56 C.2 Crosssectionandopticaltheorem 57 Bibliography 60 | - |
| dc.language.iso | en | - |
| dc.subject | 散射振幅 | zh_TW |
| dc.subject | 自旋加權橢球諧函數 | zh_TW |
| dc.subject | 自旋螺旋形式 | zh_TW |
| dc.subject | 在殼方法 | zh_TW |
| dc.subject | 圖科斯基方程 | zh_TW |
| dc.subject | 史瓦西黑洞 | zh_TW |
| dc.subject | 克爾黑洞 | zh_TW |
| dc.subject | Spin-weighted spheroidal harmonics | en |
| dc.subject | Kerr black holes | en |
| dc.subject | Schwarzschild black holes | en |
| dc.subject | Teukolsky equation | en |
| dc.subject | On-shell methods | en |
| dc.subject | Spinor-helicity formalism | en |
| dc.subject | Scattering amplitude | en |
| dc.title | 在殼觀點下的(旋轉)重力吸收過程 | zh_TW |
| dc.title | On-shell approach to (spinning) gravitational absorption processes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 賀培銘;陳江梅 | zh_TW |
| dc.contributor.oralexamcommittee | Pei-Ming Ho;Chiang-Mei Chen | en |
| dc.subject.keyword | 散射振幅,自旋加權橢球諧函數,自旋螺旋形式,在殼方法,圖科斯基方程,史瓦西黑洞,克爾黑洞, | zh_TW |
| dc.subject.keyword | Scattering amplitude,Spin-weighted spheroidal harmonics,Spinor-helicity formalism,On-shell methods,Teukolsky equation,Schwarzschild black holes,Kerr black holes, | en |
| dc.relation.page | 69 | - |
| dc.identifier.doi | 10.6342/NTU202401489 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-03 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
