Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92974
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蔡政達zh_TW
dc.contributor.advisorJeng-Da Chaien
dc.contributor.author王昱揚zh_TW
dc.contributor.authorYu-Yang Wangen
dc.date.accessioned2024-07-10T16:07:26Z-
dc.date.available2024-07-11-
dc.date.copyright2024-07-10-
dc.date.issued2024-
dc.date.submitted2024-07-08-
dc.identifier.citationF. Jensen, Introduction to Computational Chemistry (Wiley, New York, 2007).
T. Helgaker, P. Jørgensen, and J. Olsen, Molecular Electronic-Structure Theory (Wiley, New York, 2000).
R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University, New York, 1989).
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
S. Kümmel and L. Kronik, Rev. Mod. Phys. 80, 3 (2008).
A. J. Cohen, P. Mori-Sánchez, and W. Yang, Science 321, 792 (2008).
J.-D. Chai, J. Chem. Phys. 136, 154104 (2012).
J.-D. Chai, J. Chem. Phys. 140, 18A521 (2014).
J.-D. Chai, J. Chem. Phys. 146, 044102 (2017).
D. Zhang and D. G. Truhlar, J. Chem. Theory Comput. 16, 5432 (2020).
R. Bauernschmitt and R. Ahlrichs, J. Chem. Phys. 104, 9047 (1996).
E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988).
L. N. Oliveira, E. K. Gross, and W. Kohn, Phys. Rev. A 37, 2821 (1988).
Á. Nagy, Phys. Rev. A 57, 1672 (1998).
E. Schrödinger, Phys. Rev. 28, 1049 (1926).
L. Marchildon, Quantum Mechanics: From Basic Principles to Numerical Methods and Applications (Springer-Verlag, Berlin, 2002).
E. Merzbacher, Quantum Mechanics (Wiley, New York, 1998).
M. Born and R. Oppenheimer, Ann. Phys. 389, 457 (1927).
M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979).
M. Levy, Phys. Rev. A 26, 1200 (1982).
M. Levy and J. P. Perdew, in Density Functional Methods in Physics, edited by R. M. Dreizler and J. da Providência (Plenum, New York, 1985).
N. H. March, Adv. Phys. 6, 1 (1957).
E. H. Lieb, Rev. Mod. Phys. 53, 603 (1981).
E. Fermi, Rend. Accad. Naz. Lincei 6, 32 (1927).
L. H. Thomas, Math. Proc. Camb. Philos. Soc. 23, 542 (1927).
E. Teller, Rev. Mod. Phys. 34, 627 (1962).
N. L. Balàzs, Phys. Rev. 156, 42 (1967).
N. D. Mermin, Phys. Rev. 137, A1441 (1965).
U. Von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).
M. M. Pant and A. K. Rajagopal, Solid State Commun. 10, 1157 (1972).
P. W. Ayers and W. Yang, J. Chem. Phys. 124, 224108 (2006).
F. Schwabl, Statistical Mechanics, (Springer-Verlag, Berlin, 2002).
P. Coleman, Introduction to Many-Body Physics, (Cambridge University Press, Cambridge UK, 2015).
L. O. Wagner, E. M. Stoudenmire, K. Burke, and S. R. White, Phys. Rev. Lett. 111, 093003 (2013).
M. Penz, A. Laestadius, E. I. Tellgren, and M. Ruggenthaler, Phys. Rev. Lett. 123, 037401 (2019).
M. Penz, A. Laestadius, E. I. Tellgren, M. Ruggenthaler, and P. E. Lammert, Phys. Rev. Lett. 125, 249902 (2020).
S. Lang, Linear Algebra, (Springer-Verlag, New York, 1987).
P. K. Suetin, A. I. Kostrikin, and Y. I. Manin, Linear Algebra and Geometry (OPA, Amsterdam, 1997).
J. B. Conway, A Course in Functional Analysis (Springer, New York, 1990).
J. Harris and R. Jones, J. Phys. F 4, 1170 (1974).
G. L. Oliver and J. P. Perdew, Phys. Rev. A 20, 397 (1979).
S. Obara and A. Saika, J. Chem. Phys. 84, 3963 (1986).
S. Obara and A. Saika, J. Chem. Phys. 89, 1540 (1988).
M. Head-Gordon and J. A. Pople, J. Chem. Phys. 89, 5777 (1988).
T. P. Hamilton and H. F. Schaefer III, Chem. Phys. 150, 163 (1991).
R. Lindh, U. Ryu, and B. Liu, J. Chem. Phys. 95, 5889 (1991).
P. A. Dirac, Math. Proc. Camb. Philos. Soc. 26, 376 (1930).
J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
R. Binning and L. Curtiss, J. Comput. Chem. 11, 1206 (1990).
V. A. Rassolov, J. A. Pople, M. A. Ratner, and T. L. Windus, J. Chem. Phys. 109, 1223 (1998).
V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, and L. A. Curtiss, J. Comput. Chem. 22, 976 (2001).
D. A. Gilbert et al., Q-Chem User’s Guide (Q-Chem, Pittsburgh, 2012).
E. Berquist et al., Q-Chem 6.0 User’s Manual (Q-Chem, Pleasanton, 2022).
A. D. Becke, J. Chem. Phys. 88, 2547 (1988).
C. F. Bunge, J. A. Barrientos, and A. V. Bunge, At. Data and Nucl. Data Tables 53, 113 (1993).
M. Mitani and Y. Yoshioka, Theor. Chem. Acc. 131, 1169 (2012).
S. Dasgupta and J. M. Herbert, J. Comput. Chem. 38, 869 (2017).
V. I. Lebedev, USSR Comp. Math. Math. Phys. 16, 10 (1976).
V. I. Lebedev, Zh. Vychisl. Mat. Mat. Fiz. 15, 48 (1975).
Y. Shao et al., Mol. Phys. 113, 184 (2015).
K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand Reinhold, New York, 1979).
M. Klein and R. Aziz, Inert Gases: Potentials, Dynamics, and Energy Transfer in Doped Crystals (Springer-Verlag, Berlin, 1984).
K. T. Tang and J. P. Toennies, Z. Phys. D 1, 91 (1986).
R. A. Aziz and M. J. Slaman, Chem. Phys. 130, 187 (1989).
R. J. Gdanitz, Chem. Phys. Lett. 348, 67 (2001).
J. L. Duncan, Mol. Phys. 28, 1177 (1974).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92974-
dc.description.abstract科恩—沈呂九密度泛函理論(KS-DFT)在常見的交換關聯泛函下,對多參考系統可能算得錯誤的自旋密度及其相關性質。氫分子的解離是典型的例子;在其自旋極化解中,可違背現實,出現自旋對稱性破缺,導致 KS-DFT 在同一交換關聯泛函下的自旋極化解與自旋非極化解不一致。近期數值結果表明,藉適當的虛擬溫度,熱輔助佔據密度泛函理論(TAO-DFT)能解決這個問題。本文基於 TAO-DFT 構建了一套線性響應理論,證明在足夠的虛擬溫度下,TAO-DFT 必能消除多參考系統中的自旋對稱性破缺;並以 TAO-DFT 計算不同虛擬溫度下 H2、N2、He2 及 Ne2 的解離及扭曲的乙烯分子,作為例證。zh_TW
dc.description.abstractFor multireference systems, Kohn-Sham density functional theory (KS-DFT) with conventional exchange-correlation (xc) functionals can yield erroneous spin densities and related properties. A typical example is the dissociation of H2, where unphysical spin-symmetry breaking can arise in the spin-polarized solutions, resulting in distinct spin-polarized and spin-unpolarized solutions derived from the same xc functional in KS-DFT. Recently, thermally-assisted-occupation density functional theory (TAO-DFT) has been shown numerically to resolve this problem when an appropriate fictitious temperature is chosen. In this thesis, a linear response theory based on TAO-DFT is constructed to prove that TAO-DFT with a sufficiently high fictitious temperature can always eliminate the spin-symmetry breaking in multireference systems. As an illustration, TAO-DFT calculations with various fictitious temperatures are performed for the dissociation of H2, N2, He2, and Ne2, along with twisted ethylene.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-10T16:07:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-10T16:07:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsMaster’s Thesis Acceptance Certificate i
Acknowledgements ii
Abstract (Chinese) iii
Abstract iv
1 Introduction 1
1.1 Overview 1
1.2 DFT and TAO-DFT 2
1.3 Spin-Symmetry Breaking in DFT 7
1.4 Outline of the Thesis 9
2 Theory 10
2.1 Iteration of Self-Consistent Equations 10
2.2 Criterion of Spin Symmetry 12
2.3 Undamped-Iteration Kernel 16
2.4 Linear Response Theory with a Basis Set 21
2.5 High-Fictitious-Temperature Limit 23
3 Numerical Investigations 28
3.1 H2 Dissociation 29
3.2 N2 Dissociation 31
3.3 He2 Dissociation 33
3.4 Ne2 Dissociation 35
3.5 Twisted Ethylene 37
4 Conclusions 39
References 40
-
dc.language.isoen-
dc.subject密度泛函理論zh_TW
dc.subject強關聯系統zh_TW
dc.subject自旋zh_TW
dc.subject線性響應理論zh_TW
dc.subject對稱性破缺zh_TW
dc.subject三重態不穩定性zh_TW
dc.subjectSpinen
dc.subjectDensity functional theoryen
dc.subjectTriplet instabilityen
dc.subjectSymmetry breakingen
dc.subjectLinear response theoryen
dc.subjectStrongly correlated systemsen
dc.title熱輔助佔據密度泛函理論中自旋對稱性之恢復zh_TW
dc.titleRestoration of Spin Symmetry in Thermally-Assisted-Occupation Density Functional Theoryen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee薛宏中;關肇正zh_TW
dc.contributor.oralexamcommitteeHung-Chung Hsueh;Chao-Cheng Kaunen
dc.subject.keyword密度泛函理論,強關聯系統,自旋,線性響應理論,對稱性破缺,三重態不穩定性,zh_TW
dc.subject.keywordDensity functional theory,Strongly correlated systems,Spin,Linear response theory,Symmetry breaking,Triplet instability,en
dc.relation.page42-
dc.identifier.doi10.6342/NTU202401560-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-08-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
Appears in Collections:物理學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf3.53 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved