請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92956完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 關秉宗 | zh_TW |
| dc.contributor.advisor | Biing T. Guan | en |
| dc.contributor.author | 齊元義 | zh_TW |
| dc.contributor.author | Yuan-Yi Chi | en |
| dc.date.accessioned | 2024-07-09T16:06:28Z | - |
| dc.date.available | 2024-07-10 | - |
| dc.date.copyright | 2024-07-09 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-05 | - |
| dc.identifier.citation | 王绍武、葉瑾琳、龔道溢 (1998)。中國小冰期的氣候。第四紀研究,1(1):頁54–56。
徐泓 (2007)。《清代臺灣自然災害史料新編》。福建人民出版社。 翁仁憲、廖天賜、孫國笏、鍾基啟、林宗平、徐鎭暉 (2002)。塔塔加地區臺灣雲杉(Picea morrisonicola)光合作用之季節變化。農業氣象及農業水資源之應用與管理,頁131:142。 康仲霖 (2020)。以棲蘭山區臺灣扁柏樹輪最大密度重建過往800年溫度。國立臺灣大學森林環境暨資源學系 碩士論文,頁1–81。 許晃雄、周佳、陳維婷、羅敏輝、李明安、洪志誠、鄒治華、盧孟明、洪致文、陳正達、鄭兆尊 (2018)。臺灣氣候變遷科學報告2017 第一冊 物理現象與機制。 國家災害防救科技中心,頁1–56。http://ir.sinica.edu.tw/handle/201000000A/84726 陳姿彤 (2011)。以臺灣中部雲杉樹輪重建三百年古氣候:利用傳統樹輪及總體經驗模態分解法。國立臺灣大學地質科學系 碩士論文,頁1–116。 黃聖焜 (2013)。應用樹輪生態學方法重建臺灣中部塔塔加地區臺灣雲杉林分動態。國立臺灣大學森林環境暨資源學系 碩士論文,頁1–86。 楊金昌、王亞男、姜家華、賴裕芳 (1998)。塔塔加地區台灣雲杉、台灣鐵杉及玉山箭竹物候學之初步研究,中華林學季刊,31 (3),頁251–263。 應紹舜 (1985)。台灣高等植物彩色圖誌 第一卷。應紹舜。 詹明勳 (1999)。塔塔加地區天然生台灣雲杉樹木氣候學之硏究。國立臺灣大學森林學硏究所 博士論文。 鍾年鈞 (1999)。全球變遷:塔塔加高山生態系長期生態研究─塔塔加高山植群之研究(三)。行政院國家科學委員會專題研究計畫成果報告。 藍永翔 (2010)。臺灣雲杉葉部碳氮之分布與動態。國立臺灣大學森林環境暨資源學系 碩士論文。 魏聰輝 (2002)。塔塔加高山生態系表層土壤熱收支特性之研究。臺灣大學森林學研究所博士論文。 Abudureheman, R., Zhang, T., Wang, Y., Yu, S., Zhang, R., Yuan, Y., & Guo, D. (2023). A 219‐year reconstruction of April–June mean minimum temperature from the tree‐ring earlywood density on the Changbai Mountains, China. International Journal of Climatology, 43(13), 6150–6163. https://doi.org/10.1002/joc.8196 Ahmed, M., Anchukaitis, K. J., Asrat, A., Borgaonkar, H. P., Braida, M., Buckley, B. M., Büntgen, U., Chase, B. M., Christie, D. A., Cook, E. R., Curran, M. A. J., Diaz, H. F., Esper, J., Fan, Z.-X., Gaire, N. P., Ge, Q., Gergis, J., González-Rouco, J. F., Goosse, H., … PAGES 2k Consortium. (2013). Continental-scale temperature variability during the past two millennia. Nature Geoscience, 6(5), 339–346. https://doi.org/10.1038/ngeo1797 Antonova, G.F., & Stasova, VictoriaV. (1993). Effects of environmental factors on wood formation in Scots pine stems. Trees, 7(4), 214–219. https://doi.org/10.1007/BF00202076 Beguería, S., & Vicente-Serrano, S. M. (2017). SPEI: Calculation of the Standardised Precipitation-Evapotranspiration Index. R package version 1.7. Retrieved from https://CRAN.R-project.org/package=SPEI Biondi, F., & Qeadan, F. (2008). A theory-driven approach to tree-ring standardization: Defining the biological trend from expected basal area increment. Tree-Ring Research, 64(2), 81–96. https://doi.org/10.3959/2008-6.1 Björklund, J., Seftigen, K., Schweingruber, F., Fonti, P., Arx, G., Bryukhanova, M. V., Cuny, H. E., Carrer, M., Castagneri, D., & Frank, D. C. (2017). Cell size and wall dimensions drive distinct variability of earlywood and latewood density in Northern Hemisphere conifers. New Phytologist, 216(3), 728–740. https://doi.org/10.1111/nph.14639 Björklund, J., von Arx, G., Nievergelt, D., Wilson, R., Van den Bulcke, J., Günther, B., Loader, N. J., Rydval, M., Fonti, P., Scharnweber, T., Andreu-Hayles, L., Büntgen, U., D’Arrigo, R., Davi, N., De Mil, T., Esper, J., Gärtner, H., Geary, J., Gunnarson, B. E., … Frank, D. (2019). Scientific merits and analytical challenges of tree-ring densitometry. Reviews of Geophysics, 57(4), 1224–1264. https://doi.org/10.1029/2019RG000642 Briffa, K. R., Jones, P. D., Bartholin, T. S., Eckstein, D., Schweingruber, F. H., Karlén, W., Zetterberg, P., & Eronen, M. (1992a). Fennoscandian summers from ad 500: Temperature changes on short and long timescales. Climate Dynamics, 7(3), 111–119. https://doi.org/10.1007/BF00211153 Briffa, K. R., Jones, P., & Schweingruber, F. (1992b). Tree-ring density reconstructions of summer temperature patterns across western North America since 1600. Journal of Climate, 5(7), 735–754. https://doi.org/10.1175/1520-0442(1992)005<0735:TRDROS>2.0.CO;2 Briffa, K. R., Jones, P. D., Schweingruber, F. H., & Osborn, T. J. (1998a). Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature, 393(6684), 450–455. https://doi.org/10.1038/30943 Briffa, K. R., Osborn, T. J., & Schweingruber, F. H. (2004). Large-scale temperature inferences from tree rings: A review. Global and Planetary Change, 40(1–2), 11–26. https://doi.org/10.1016/S0921-8181(03)00095-X Briffa, K. R., Schweingruber, F. H., Jones, P. D., Osborn, T. J., Harris, I. C., Shiyatov, S. G., Vaganov, E. A., & Grudd, H. (1998b). Trees tell of past climates: But are they speaking less clearly today? Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353(1365), 65–73. https://doi.org/10.1098/rstb.1998.0191 Buckley, B. M., Hansen, K. G., Griffin, K. L., Schmiege, S., Oelkers, R., D’Arrigo, R. D., Stahle, D. K., Davi, N., Nguyen, T. Q. T., Le, C. N., & Wilson, R. J. S. (2018). Blue intensity from a tropical conifer’s annual rings for climate reconstruction: An ecophysiological perspective. Dendrochronologia, 50, 10–22. https://doi.org/10.1016/j.dendro.2018.04.003 Bunn, A. G. (2008). A dendrochronology program library in R (dplR). Dendrochronologia, 26(2), 115–124. https://doi.org/10.1016/j.dendro.2008.01.002 Bunn, A. G. (2010). Statistical and visual crossdating in R using the dplR library. Dendrochronologia, 28(4), 251–258. https://doi.org/10.1016/j.dendro.2009.12.001 Buras, A. (2017). A comment on the expressed population signal. Dendrochronologia, 44, 130–132. https://doi.org/10.1016/j.dendro.2017.03.005 Campbell, R., McCarroll, D., Loader, N. J., Grudd, H., Robertson, I., & Jalkanen, R. (2007). Blue intensity in Pinus sylvestris tree-rings: Developing a new palaeoclimate proxy. The Holocene, 17(6), 821–828. https://doi.org/10.1177/0959683607080523 Castagneri, D., Fonti, P., Von Arx, G., & Carrer, M. (2017). How does climate influence xylem morphogenesis over the growing season? Insights from long-term intra-ring anatomy in Picea abies. Annals of Botany, 119(6), 1011–1020. https://doi.org/10.1093/aob/mcw274 Chen, F., Yuan, Y., Wei, W., Wang, L., Yu, S., Zhang, R., Fan, Z., Shang, H., Zhang, T., & Li, Y. (2012). Tree ring density-based summer temperature reconstruction for Zajsan Lake area, East Kazakhstan. International Journal of Climatology, 32(7), 1089–1097. https://doi.org/10.1002/joc.2327 Chen, F., Yuan, Y., Wei, W., Yu, S., Li, Y., Zhang, R., Zhang, T., & Shang, H. (2010). Chronology development and climate response analysis of Schrenk spruce (Picea schrenkiana) tree-ring parameters in the Urumqi River Basin, China. Geochronometria, 36(1), 17–22. https://doi.org/10.2478/v10003-010-0014-4 Conkey, L. E. (1986). Red spruce tree-ring widths and densities in eastern North America as indicators of past climate. Quaternary Research, 26(2), 232–243. https://doi.org/10.1016/0033-5894(86)90107-9 Cook, E. R. (1985). A time series analysis approach to tree‐ring standardization, Ph.D. Dissertation, The University of Arizona, Tucson. Cook, E.R., & Kairiukstis, L.A. (Eds.) (1990). Methods of Dendrochronology: Applications in the Environmental Sciences. Springer: Dordrecht, The Netherlands, ISBN 978-0-7923-0586-6. Cook, E. R., Krusic, P. J., Anchukaitis, K. J., Buckley, B. M., Nakatsuka, T., & Sano, M. (2013). Tree-ring reconstructed summer temperature anomalies for temperate East Asia since 800 C.E. Climate Dynamics, 41(11–12), 2957–2972. https://doi.org/10.1007/s00382-012-1611-x D’Arrigo, R., Wilson, R., Liepert, B., & Cherubini, P. (2008). On the ‘Divergence Problem’ in Northern Forests: A review of the tree-ring evidence and possible causes. Global and Planetary Change, 60(3–4), 289–305. https://doi.org/10.1016/j.gloplacha.2007.03.004 Esper, J., Cook, E. R., & Schweingruber, F. H. (2002). Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science, 295(5563), 2250–2253. https://doi.org/10.1126/science.1066208 Fox, J., & Weisberg, S. (2019). An R Companion to Applied Regression, 3rd ed. Thousand Oaks CA: Sage. Fritts, H. C. (1976). Tree Rings and Climate. Caldwell, NJ: The Blackburn Press. Giagli, K., Gričar, J., Vavrčík, H., & Gryc, V. (2016). Nine-year monitoring of cambial seasonality and cell production in Norway spruce. iForest - Biogeosciences and Forestry, 9(3), 375–382. https://doi.org/10.3832/ifor1771-008 Gindl, W., Grabner, M., & Wimmer, R. (2000). The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees, 14(7), 409–414. https://doi.org/10.1007/s004680000057 Gray, S. T., Graumlich, L. J., Betancourt, J. L., & Pederson, G. T. (2004). Gray S T, Graumlich L J, Betancourt J L, et al. 2004. A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D. Geophysical Research Letters, 31(12), L12205, https://doi.org/10.1029/2004GL019932 Gričar, J., Prislan, P., Gryc, V., Vavrčík, H., de Luis, M., & Čufar, K. (2014). Plastic and locally adapted phenology in cambial seasonality and production of xylem and phloem cells in Picea abies from temperate environments. Tree Physiology, 34(8), 869–881. https://doi.org/10.1093/treephys/tpu026 Grissino-Mayer, H. D., 2001. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Research 57, 205–221. Grudd, H. (2008). Torneträsk tree-ring width and density ad 500–2004: A test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Climate Dynamics, 31(7–8), 843–857. https://doi.org/10.1007/s00382-007-0358-2 Guan, B. T., Wright, W. E., Chung, C.-H., & Chang, S.-T. (2012). ENSO and PDO strongly influence Taiwan spruce height growth. Forest Ecology and Management, 267, 50–57. https://doi.org/10.1016/j.foreco.2011.11.028 Guan, B. T., Wright, W. E., & Cook, E. R. (2018a). Ensemble empirical mode decomposition as an alternative for tree-ring chronology development. Tree-Ring Research, 74(1), 28–38. https://doi.org/10.3959/1536-1098-74.1.28 Guan, B. T., Wright, W. E., Chiang, L.-H., & Cook, E. R. (2018b). A dry season streamflow reconstruction of the critically endangered Formosan landlocked salmon habitat. Dendrochronologia, 52, 152–161. https://doi.org/10.1016/j.dendro.2018.10.008 Gunnarson, B. E., Linderholm, H. W., & Moberg, A. (2011). Improving a tree-ring reconstruction from west-central Scandinavia: 900 years of warm-season temperatures. Climate Dynamics, 36(1–2), 97–108. https://doi.org/10.1007/s00382-010-0783-5 Haines, H. A., Gadd, P. S., Palmer, J., Olley, J. M., Hua, Q., & Heijnis, H. (2018). A new method for dating tree-rings in trees with faint, indeterminate ring boundaries using the Itrax core scanner. Palaeogeography, Palaeoclimatology, Palaeoecology, 497, 234–243. https://doi.org/10.1016/j.palaeo.2018.02.025 Holmes, R. L. (1983). Computer-assisted quality control in tree-ring dating and measurement Tree-Ring Bulletin. https://www.scinapse.io/papers/1556866995 Huang, N. E., & Wu, Z. (2008). A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Reviews of Geophysics, 46(2). https://doi.org/10.1029/2007RG000228 Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995. http://www.jstor.org/stable/53161 IPCC (2023) Climate change 2023: Synthesis report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC,Geneva, Switzerland, pp. 35–115. https://doi.org/10.59327/IPCC/AR6-9789291691647 Jacquin, P., Longuetaud, F., Leban, J.-M., & Mothe, F. (2017). X-ray microdensitometry of wood: A review of existing principles and devices. Dendrochronologia, 42, 42–50. https://doi.org/10.1016/j.dendro.2017.01.004 Kaczka, R. J., Spyt, B., Janecka, K., Beil, I., Büntgen, U., Scharnweber, T., Nievergelt, D., & Wilmking, M. (2018). Different maximum latewood density and blue intensity measurements techniques reveal similar results. Dendrochronologia, 49, 94–101. https://doi.org/10.1016/j.dendro.2018.03.005 Kerr, R. A. (2000). A North Atlantic climate pacemaker for the centuries. Science, 288(5473), 1984–1985. https://doi.org/10.1126/science.288.5473.1984 Li, S., & Bates, G. T. (2007). Influence of the Atlantic Multidecadal Oscillation on the winter climate of East China. Advances in Atmospheric Sciences, 24(1), 126–135. https://doi.org/10.1007/s00376-007-0126-6 Li, S., & Luo, F.-F. (2013). Lead-lag connection of the Atlantic Multidecadal Oscillation (AMO) with East Asian surface air temperatures in instrumental records. Atmospheric and Oceanic Science Letters, 6, 138–143. https://doi.org/10.1080/16742834.2013.11447070 Li, S., Jing, Y., & Luo, F. (2015). The potential connection between China surface air temperature and the Atlantic Multidecadal Oscillation (AMO) in the Pre-industrial Period. Science China Earth Sciences, 58(10), 1814–1826. https://doi.org/10.1007/s11430-015-5091-9 Li, T., & Li, J. (2023). August temperature reconstruction based on tree-ring latewood blue intensity in the southeastern Tibetan Plateau. Forests, 14(7), 1441. https://doi.org/10.3390/f14071441 Lin, Y.-F., Terng, C.-T., Wu, C.-R., & Yu, J.-Y. (2023). Seasonally-reversed trends in the subtropical Northwestern Pacific linked to asymmetric AMO influences. Scientific Reports, 13(1), 13735. https://doi.org/10.1038/s41598-023-40979-9 Liu, Y., Li, C., Sun, C., Song, H., Li, Q., Cai, Q., & Liu, R. (2020). Temperature variation at the low‐latitude regions of East Asia recorded by tree rings during the past six centuries. International Journal of Climatology, 40(3), 1561–1570. https://doi.org/10.1002/joc.6287 Luukko, P. J. J., Helske, J., & Räsänen, E. (2016). Introducing libeemd: A program package for performing the ensemble empirical mode decomposition. Computational Statistics, 31(2), 545–557. https://doi.org/10.1007/s00180-015-0603-9 Mäkinen, H., Nöjd, P., Kahle, H.-P., Neumann, U., Tveite, B., Mielikäinen, K., Röhle, H., & Spiecker, H. (2003). Large-scale climatic variability and radial increment variation of Picea abies (L.) Karst. In central and northern Europe. Trees, 17(2), 173–184. https://doi.org/10.1007/s00468-002-0220-4 Mann, M. E., Steinman, B. A., Brouillette, D. J., & Miller, S. K. (2021). Multidecadal climate oscillations during the past millennium driven by volcanic forcing. Science, 371(6533), 1014–1019. https://doi.org/10.1126/science.abc5810 Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., & Ni, F. (2009). Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science, 326(5957), 1256–1260. https://doi.org/10.1126/science.1177303 Mayer, K. (2022). trlboku: Tree Ring Lab BOKU - a lab internal R function collection. R package version 0.0.0.9019. McCarroll, D., Pettigrew, E., Luckman, A., Guibal, F., & Edouard, J.-L. (2002). Blue reflectance provides a surrogate for latewood density of high‐latitude pine tree rings. Arctic, Antarctic, and Alpine Research, 34(4), 450–453. https://doi.org/10.2307/1552203 Meko, D. M., & Baisan, C. H. (2001). Pilot study of latewood-width of conifers as an indicator of variability of summer rainfall in the North American monsoon region. International Journal of Climatology, 21(6), 697–708. https://doi.org/10.1002/joc.646 Melvin, T. M., & Briffa, K. R. (2014). CRUST: Software for the implementation of Regional Chronology Standardisation: Part 1. Signal-Free RCS. Dendrochronologia, 32(1), 7–20. https://doi.org/10.1016/j.dendro.2013.06.002 Plunkett, G., Sigl, M., McConnell, J. R., Pilcher, J. R., & Chellman, N. J. (2023). The significance of volcanic ash in Greenland ice cores during the Common Era. Quaternary Science Reviews, 301, 107936. https://doi.org/10.1016/j.quascirev.2022.107936 Polge, H. (1970). The use of X-ray densitometric methods in dendrochronology. Tree-Ring Bulletin, 30, 1–10. https://repository.arizona.edu/handle/10150/259942 Pompa-García, M., & Venegas-González, A. (2016). Temporal variation of wood density and carbon in two elevational Sites of Pinus cooperi in relation to climate response in Northern Mexico. PLOS ONE, 11(6), e0156782. https://doi.org/10.1371/journal.pone.0156782 Pritzkow, C., Heinrich, I., Grudd, H., & Helle, G. (2014). Relationship between wood anatomy, tree-ring widths and wood density of Pinus sylvestris L. and climate at high latitudes in northern Sweden. Dendrochronologia, 32(4), 295–302. https://doi.org/10.1016/j.dendro.2014.07.003 Rathgeber, C. B. K. (2017). Conifer tree-ring density inter-annual variability – anatomical, physiological and environmental determinants. New Phytologist, 216(3), 621–625. https://doi.org/10.1111/nph.14763 Rocha, E., Gunnarson, B. E., & Holzkämper, S. (2020). Reconstructing summer precipitation with MXD data from Pinus sylvestris growing in the Stockholm Archipelago. Atmosphere, 11(8), 790. https://doi.org/10.3390/atmos11080790 Römer, P., Hartl, C., Schneider, L., Bräuning, A., Szymczak, S., Huneau, F., Lebre, S., Reinig, F., Büntgen, U., & Esper, J. (2021). Reduced temperature sensitivity of maximum latewood density formation in high-elevation Corsican pines under recent warming. Atmosphere, 12(7), 804. https://doi.org/10.3390/atmos12070804 Rossi, S., Morin, H., Deslauriers, A., & Plourde, P.-Y. (2011). Predicting xylem phenology in black spruce under climate warming. Global Change Biology, 17(1), 614–625. https://doi.org/10.1111/j.1365-2486.2010.02191.x Rossi, S., Rathgeber, C. B. K., & Deslauriers, A. (2009). Comparing needle and shoot phenology with xylem development on three conifer species in Italy. Annals of Forest Science, 66, 206. https://doi.org/10.1051/forest/2008088 Rydval, M., Larsson, L.-Å., McGlynn, L., Gunnarson, B. E., Loader, N. J., Young, G. H. F., & Wilson, R. (2014). Blue intensity for dendroclimatology: Should we have the blues? Experiments from Scotland. Dendrochronologia, 32(3), 191–204. https://doi.org/10.1016/j.dendro.2014.04.003 Schneider, L., Esper, J., Timonen, M., & Büntgen, U. (2014). Detection and evaluation of an early divergence problem in northern Fennoscandian tree-ring data. Oikos, 123(5), 559–566. https://doi.org/10.1111/j.1600-0706.2013.00836.x Schweingruber, F. H. (1990). Radiodensitometry. In Methods of Dendrochronology: Applications in the Environmental Sciences, Cook ER, Kairiukstis LA (eds). Dordrecht: Springer Science & Business Media., 55–63. Schweingruber, F. H. (2007). Wood Structure and Environment: Springer Science &Business Media. Schweingruber, F. H., Fritts, H. C., Bräker, O. U., Drew, L. G., & Schär, E. (1978). The X-Ray technique as applied to dendroclimatology. https://repository.arizona.edu/handle/10150/260420 Shi, F., Yang, B., Linderholm, H. W., Seftigen, K., Yang, F., Yin, Q., Shao, X., & Guo, Z. (2020). Ensemble standardization constraints on the influence of the tree growth trends in dendroclimatology. Climate Dynamics, 54(7–8), 3387–3404. https://doi.org/10.1007/s00382-020-05179-5 Si, D., & Yu, L. (2023). Impact of the Atlantic multidecadal variability on East Asian summer climate in idealized simulations. Atmospheric and Oceanic Science Letters, 16(5), 100399. https://doi.org/10.1016/j.aosl.2023.100399 SIDC-Team. (2023). Monthly report on the international sunspot number. World Data Center for the Sunspot Index, Royal Observatory of Belgium. Retrieved from http://sidc.oma.be/silso/datafiles Siebert, L., Simkin, T., & Kimberly, P. (2010). Volcanoes of the world, 3rd ed. University of California Press. https://www.jstor.org/stable/10.1525/j.ctt1pnqdx Sohar, K., Altman, J., Lehečková, E., & Doležal, J. (2017). Growth-climate relationships of Himalayan conifers along elevational and latitudinal gradients. International Journal of Climatology, 37(5), 2593–2605. https://doi.org/10.1002/joc.4867 Speer, J.H. (2010). Fundamentals of Tree-Ring Research; The University of Arizona Press: Tucson, AZ, USA, 2010; p. 333. Tao, Q., Zhang, Q., & Chen, X. (2021). Tree-ring reconstructed diurnal temperature range on the eastern Tibetan plateau and its linkage to El Niño-Southern Oscillation. International Journal of Climatology, 41(3), 1696–1711. https://doi.org/10.1002/joc.6917 Trouet, V., & Van Oldenborgh, G. J. (2013). KNMI Climate Explorer: A web-based research tool for high-resolution paleoclimatology. Tree-ring Research, 69, 3–13. https://doi.org/10.3959/1536-1098-69.1.3 Venables, W. N., & Ripley, B. D. (2013). Modern Applied Statistics with S-PLUS. Springer Science & Business Media. Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1 Wagner, S., & Zorita, E. (2005). The influence of volcanic, solar and CO2 forcing on the temperatures in the Dalton Minimum (1790–1830): A model study. Climate Dynamics, 25(2), 205–218. https://doi.org/10.1007/s00382-005-0029-0 Wang, J., Yang, B., Qin, C., Kang, S., He, M., & Wang, Z. (2014). Tree-ring inferred annual mean temperature variations on the southeastern Tibetan Plateau during the last millennium and their relationships with the Atlantic Multidecadal Oscillation. Climate Dynamics, 43(3–4), 627–640. https://doi.org/10.1007/s00382-013-1802-0 Wang, L., & Chen, W. (2014). An intensity index for the East Asian winter monsoon. Journal of Climate, 27(6), 2361–2374. https://doi.org/10.1175/JCLI-D-13-00086.1 Wang, L.-C., Behling, H., Lee, T.-Q., Li, H.-C., Huh, C.-A., Shiau, L.-J., Chen, S.-H., & Wu, J.-T. (2013). Increased precipitation during the Little Ice Age in northern Taiwan inferred from diatoms and geochemistry in a sediment core from a subalpine lake. Journal of Paleolimnology, 49(4), 619–631. https://doi.org/10.1007/s10933-013-9679-9 Wang, X., Brown, P. M., Zhang, Y., & Song, L. (2011). Imprint of the Atlantic Multidecadal Oscillation on tree-ring widths in Northeastern Asia since 1568. PLoS ONE, 6(7), e22740. https://doi.org/10.1371/journal.pone.0022740 Wigley, T. M. L., Briffa, K. R., & Jones, P. D. (1984). On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Applied Meteorology and Climatology, 23(2), 201–213. https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2 Wilson, R., Anchukaitis, K., Briffa, K. R., Büntgen, U., Cook, E., D’Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B., Hegerl, G., Helama, S., Klesse, S., Krusic, P. J., Linderholm, H. W., Myglan, V., Osborn, T. J., Rydval, M., Schneider, L., … Zorita, E. (2016). Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context. Quaternary Science Reviews, 134, 1–18. https://doi.org/10.1016/j.quascirev.2015.12.005 Wilson, R., D'Arrigo, R., Andreu-Hayles, L., Oelkers, R., Wiles, G., Anchukaitis, K., & Davi, N. (2017). Experiments based on blue intensity for reconstructing North Pacific temperatures along the Gulf of Alaska. Climate of the Past,13(8), 1007–1022. https://doi.org/10.5194/cp-13-1007-2017 Wu, Z., & Huang, N. E. (2009). Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis, 01(01), 1–41. https://doi.org/10.1142/S1793536909000047 Xu, G., Liu, X., Zhang, Q., Zhang, Q., Hudson, A., & Trouet, V. (2019). Century-scale temperature variability and onset of industrial-era warming in the Eastern Tibetan Plateau. Climate Dynamics, 53(7–8), 4569–4590. https://doi.org/10.1007/s00382-019-04807-z Yasue, K., Funada, R., Kobayashi, O., & Ohtani, J. (2000). The effects of tracheid dimensions on variations in maximum density of Picea glehnii and relationships to climatic factors. Trees, 14(4), 223–229. https://doi.org/10.1007/PL00009766 Yin, H., Li, M.-Y., & Huang, L. (2021). Summer mean temperature reconstruction based on tree-ring density over the past 440 years on the eastern Tibetan Plateau. Quaternary International, 571, 81–88. https://doi.org/10.1016/j.quaint.2020.09.018 Yin, H., Liu, H., Linderholm, H. W., & Sun, Y. (2015). Tree ring density-based warm-season temperature reconstruction since A.D. 1610 in the eastern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 426, 112–120. https://doi.org/10.1016/j.palaeo.2015.03.003 Zang, C., & Biondi, F. (2015). treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography, 38(4), 431–436. https://doi.org/10.1111/ecog.01335 Zhang, P., Linderholm, H. W., Gunnarson, B. E., Björklund, J., & Chen, D. (2016). 1200 years of warm-season temperature variability in central Scandinavia inferred from tree-ring density. Climate of the Past, 12(6), 1297–1312. https://doi.org/10.5194/cp-12-1297-2016 Zhang, Y., Li, J., Zheng, Z., & Zeng, S. (2021). A 479-year early summer temperature reconstruction based on tree-ring in the Southeastern Tibetan Plateau. Atmosphere, 12, 1251. https://doi.org/10.3390/atmos12101251 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92956 | - |
| dc.description.abstract | 工業革命後,人類所排放的溫室氣體增加,儀器觀測溫度在近數十年中明顯上升。然因可靠的儀器紀錄僅始於1950年代,是以溫度上升是否全因人類造成迄今仍未能釐清。樹芯等氣候替代資訊(climate proxy),已被證實能有效重建古氣候,藉以審視與比較今氣候變化與古氣候變化的關係。
本研究利用臺灣中部塔塔加地區的臺灣雲杉(Picea morrisonicola)樹輪密度為材料重建氣候,經叢集經驗模態分解(Ensemble Empirical Mode Decomposition)移除生長趨勢,建立輪寬及最大密度(Maximum Density)、平均密度(Ring Density)、最小密度(Minimum Density)等樹輪年表。以阿里山氣象站氣候資料(1934–2020年)為校準資料,比較氣象站觀測紀錄與各樹輪年表間相關性,作為氣候重建的依據。 結果顯示,樹輪密度年表與溫度呈現顯著正相關,最小密度及最大密度年表顯示與標準化降雨蒸發散指數(Standardized Precipitation Evapotranspiration Index)的相關性微弱。最大密度年表與二到十二月均溫存在高度相關,決定係數達到0.67,因此利用最大密度年表重建1723至2020年的二到十二月均溫。依據所得的重建,本研究觀察到兩個相對暖期:1723至1755、1989至2020年,以及兩個相對冷期:1836至1845,1885至1893;而二十世紀末的增溫幅度大於其他暖期。 重建溫度與大氣環流指數相關場域分析顯示,在1901–2020年期間,重建溫度與東亞、赤道等地區地面溫度正相關;在1870–2020年期間,與西太平洋、印度洋、北大西洋海溫存在正相關。推測重建溫度年際變化可能受到火山影響。十九世紀低溫期可能與小冰期末期或道爾頓極小期(Dalton minimum)等有關,亦觀察到領先大西洋多年代際振盪 (Atlantic Multidecadal Oscillation)的現象。 | zh_TW |
| dc.description.abstract | After the Industrial Revolution, the emission of greenhouse gases by humans increased, and the observed temperatures have significantly increased in the past few decades. Due to the limitations of instrumental records, it remains inconclusive whether the warming is entirely made by people. Climate proxies, such as tree rings, have been demonstrated as effective for reconstructing temperatures to examine temperature changes nowadays.
This study aimed to reconstruct high-altitude temperatures by using the tree-ring density of Taiwan spruces (Picea morrisonicola) in the Tatachia area of central Taiwan. The study used ensemble empirical mode decomposition to remove growth trends and an X-ray densitometry machine to measure wood density. Tree-ring chronologies of ring width, maximum density (MXD), ring density, and minimum density were developed. Correlations between climate data from the Alishan weather station (1934-2020) and the chronologies were examined to find the best chronology for reconstruction. The density chronologies exhibited significantly positive correlations with temperature, whereas the minimum density and MXD chronologies show weak correlations with the Standardized Precipitation Evapotranspiration Index. The correlation between MXD and the average monthly mean temperatures from February to December was the highest (R2 = 0.67). Therefore, this study used MXD chronology to reconstruct the February–December mean temperatures from 1723 to 2020 CE. Reconstruction identified two relatively warm periods: 1723–1755 and 1989–2020, and two relatively cold periods: 1836–1845 and 1885–1893. The warming trend at the end of the 20th century exceeded that of other warm periods. Spatial field correlation analysis showed that the temperature reconstruction was positively correlated with East Asia, the equatorial region land temperature (1901-2020), and the sea surface temperatures in the western Pacific, Indian Ocean, and North Atlantic (1870-2020). Volcanic activities might influence the reconstruction's interannual temperature variations. The anomalously cold periods in the 19th century may be related to the end of the Little Ice Age or the Dalton Minimum. This study also revealed that both the observed and the reconstructed temperatures were leading the development of the Atlantic Multidecadal Oscillation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-09T16:06:28Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-09T16:06:28Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii Abstract iv 目次 vi 圖次 ix 表次 x 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 第二章 前人研究 3 2.1 樹輪形成 3 2.2 細胞生長與氣候條件關係 3 2.3 樹輪變異 4 2.4 樹輪學基本原理 5 2.4.1 均變原則 5 2.4.2 限制因子原則 6 2.4.3 交叉定年 6 2.4.4 標準化 6 2.5 去趨勢及建立年表 6 2.5.1 移除生長趨勢常用方法 7 2.5.2 區域曲線標準化及其延伸 7 2.5.3 叢集經驗模態分解法 8 2.6 樹輪密度測量方式 9 2.6.1 X-ray 測量 10 2.6.2 形態解剖學 10 2.6.3 藍光強度 11 2.7 全球樹輪氣候學應用 11 2.7.1 樹輪密度與氣候之關係 11 2.7.2 利用樹輪密度重建氣候 12 2.7.3 樹輪年表網絡之應用 13 2.7.4 樹輪重建與大氣環流關係 13 2.7.5 國內樹輪氣候學研究 14 第三章 材料與方法 15 3.1 研究材料 15 3.2 研究地點及氣候 16 3.3 研究方法 17 3.3.1 樣本採集 18 3.3.2 樣本前處理 18 3.3.3 輪寬測量 18 3.3.4 輪寬交叉定年及統計分析 19 3.3.5 索式萃取 20 3.3.6 密度掃描 20 3.3.7 密度測量 21 3.3.8 叢集經驗模態分解法去趨勢及建立年表 21 3.3.9 分析年表與氣候相關性 23 3.3.10 重建氣候 23 3.3.11 與全球溫度及遙相關比較 25 第四章 結果 27 4.1 樹輪數據 27 4.2 各特徵原始年表間差異 27 4.3 年表與氣候相關性 28 4.3.1 輪寬年表 28 4.3.2 密度年表 31 4.4 重建氣候 36 4.5 最大密度重建溫度分析 38 4.6 重建序列分析 40 4.7 重建溫度與全球溫度之空間分析 41 4.8 重建溫度與遙相關 46 第五章 討論 50 5.1 臺灣雲杉樹輪年表 50 5.2 臺灣雲杉樹輪與氣候之關係 50 5.2.1 輪寬年表與阿里山氣象站之關係 50 5.2.2 密度年表與阿里山氣象站之關係 51 5.3 重建古氣候分析 53 5.3.1 與歷史文獻比較 53 5.3.2 與全球樹輪重建年表比較 54 5.3.3 與臺灣樹輪重建年表比較 55 5.4 影響溫度變化的大規模自然因素 56 5.4.1 火山 56 5.4.2 小冰期 58 5.4.3 大西洋多年代際振盪 59 第六章 結論 61 參考文獻 63 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 樹輪氣候學 | zh_TW |
| dc.subject | 樹輪最大密度 | zh_TW |
| dc.subject | 大西洋多年代際振盪 | zh_TW |
| dc.subject | 臺灣雲杉 | zh_TW |
| dc.subject | 叢集經驗模態分解法 | zh_TW |
| dc.subject | 溫度重建 | zh_TW |
| dc.subject | Picea morrisonicola | en |
| dc.subject | Atlantic Multidecadal Oscillation | en |
| dc.subject | Ensemble empirical mode decomposition | en |
| dc.subject | Dendroclimatology | en |
| dc.subject | Tree-ring maximum density | en |
| dc.subject | Temperature reconstruction | en |
| dc.subject | Taiwan spruces | en |
| dc.title | 以塔塔加地區臺灣雲杉樹輪最大密度重建過往 300 年溫度 | zh_TW |
| dc.title | A Temperature Reconstruction Over the Past 300 Years Using Tree-ring Maximum Density of Taiwan Spruce (Picea morrisonicola) at Tatachia Area, Central Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 魏國彥;吳奇樺 | zh_TW |
| dc.contributor.oralexamcommittee | Kuo-Yen Wei;Chi-Hua Wu | en |
| dc.subject.keyword | 大西洋多年代際振盪,樹輪氣候學,叢集經驗模態分解法,臺灣雲杉,溫度重建,樹輪最大密度, | zh_TW |
| dc.subject.keyword | Atlantic Multidecadal Oscillation,Dendroclimatology,Ensemble empirical mode decomposition,Picea morrisonicola,Taiwan spruces,Temperature reconstruction,Tree-ring maximum density, | en |
| dc.relation.page | 74 | - |
| dc.identifier.doi | 10.6342/NTU202401234 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-07-05 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 森林環境暨資源學系 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 9.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
