請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92953完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱國瑞 | zh_TW |
| dc.contributor.advisor | Kwo-Ray Chu | en |
| dc.contributor.author | 楊鈞禹 | zh_TW |
| dc.contributor.author | Chun-Yu Yang | en |
| dc.date.accessioned | 2024-07-08T16:13:56Z | - |
| dc.date.available | 2024-07-09 | - |
| dc.date.copyright | 2024-07-08 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-04 | - |
| dc.identifier.citation | [1] M. S. Lin, L. C. Liu, L. R. Barnett, Y. F. Tsai, and K. R. Chu. On electromagnetic wave ignited sparks in aqueous dimers. Physics of Plasmas, 28(10):102102, 2021.
[2] John David Jackson. Classical Electrodynamics. Wiley, New York, 3rd edition, 1999. [3] Peter Josef William Debye. Polar molecules. Dover publications, 1929. [4] Udo Kaatze. Complex permittivity of water as a function of frequency and temper- ature. Journal of Chemical & Engineering Data, 34(4):371–374, 1989. [5] Jun Zhou, Xin Rao, Xiaoming Liu, Tao Li, Lin Zhou, Yanshun Zheng, and Zheng Zhu. Temperature dependent optical and dielectric properties of liquid water studied by terahertz time-domain spectroscopy. AIP Advances, 9(3):035346, 2019. [6] UKaatzeandVUhlendorf.Thedielectricpropertiesofwateratmicrowavefrequen- cies. Zeitschrift für Physikalische Chemie, 126(2):151–165, 1981. [7] CecilieRønne,LarsThrane,Per-OlofÅstrand,AndersWallqvist,KurtVMikkelsen, and Søren R Keiding. Investigation of the temperature dependence of dielectric relaxation in liquid water by thz reflection spectroscopy and molecular dynamics simulation. The Journal of chemical physics, 107(14):5319–5331, 1997. [8] Chao Zhang and Michiel Sprik. Computing the dielectric constant of liquid water at constant dielectric displacement. Physical Review B, 93:144201, Apr 2016. [9] Gabriele Raabe and Richard J. Sadus. Molecular dynamics simulation of the di- electric constant of water: The effect of bond flexibility. The Journal of Chemical Physics, 134(23):234501, 2011. [10] Kuan-Wen Chen (陳冠文). An investigation on microwave dielectric heating : po- larization charge shielding effect and microwave resonance phenomenon/ 介電質微 波加熱之特性探討: 極化電荷之屏蔽效應與微波共振現象, 2019. [11] Stuart Nelson and Andrzej Kraszewski. Dielectric properties of materials and mea- surement techniques. Drying Technology - DRY TECHNOL, 8:1123–1142, 01 1990. [12] Roger F. Harrington. Time-Harmonic Electromagnetic Fields. IEEE-Press, 2001. [13] Andrew Zangwill. Modern Electrodynamics. Cambridge University Press, 2012. [14] Someone on wiki. Morphology-dependent resonance (https://en.wikipedia.org/wiki/Morphology-dependent_resonance), May 2021. [15] Hamza K. Khattak, Pablo Bianucci, and Aaron D. Slepkov. Linking plasma for- mation in grapes to microwave resonances of aqueous dimers. Proceedings of the National Academy of Sciences, 116(10):4000–4005, 2019. [16] Gustav Mie. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Annalen der physik, 330(3):377–445, 1908. [17] Hitoshi Kuwata, Hiroharu Tamaru, Kunio Esumi, and Kenjiro Miyano. Resonant light scattering from metal nanoparticles: Practical analysis beyond rayleigh approx- imation. Applied Physics Letters, 83(22):4625–4627, 2003. [18] Reuben M Bakker, Dmitry Permyakov, Ye Feng Yu, Dmitry Markovich, Ramón Paniagua-Domínguez, Leonard Gonzaga, Anton Samusev, Yuri Kivshar, Boris Luk' yanchuk, and Arseniy I Kuznetsov. Magnetic and electric hotspots with silicon nan- odimers. Nano Letters, 15(3):2137–2142, 2015. [19] Ming S Lin, Shih M Lin, Wei Y Chiang, LR Barnett, and KR Chu. Ef- fects of polarization-charge shielding in microwave heating. Physics of Plasmas, 22(8):083302, 2015. [20] Masud Mansuripur and Armis R. Zakharian. Maxwell’s macroscopic equations, the energy-momentum postulates, and the lorentz law of force. Phys. Rev. E, 79:026608, Feb 2009. [21] Scott R Waitukaitis, Antal Zuiderwijk, Anton Souslov, Corentin Coulais, and Mar- tin van Hecke. Coupling the leidenfrost effect and elastic deformations to power sustained bouncing. Nature Physics, 13(11):1095–1099, November 2017. [22] Eric B. Lindgren, Ivan N. Derbenev, Armik Khachatourian, Ho-Kei Chan, An- thony J. Stace, and Elena Besley. Electrostatic self-assembly: Understanding the sig- nificance of the solvent. Journal of Chemical Theory and Computation, 14(2):905– 915, 2018. PMID: 29251927. [23] ZhenguoGao,BinghuiXu,MingliangMa,AilingFeng,YiZhang,XuehuaLiu,Zirui Jia, and Guanglei Wu. Electrostatic self-assembly synthesis of znfe2o4 quantum dots (znfe2o4@c) and electromagnetic microwave absorption. Composites Part B: Engineering, 179:107417, 2019. [24] R.K. Singh, R. Kumar, D.P. Singh, R. Savu, and S.A. Moshkalev. Progress in microwave-assisted synthesis of quantum dots (graphene/carbon/semiconducting) for bioapplications: a review. Materials Today Chemistry, 12:282–314, 2019. [25] ThanhXuanHoang,DanielLeykam,andYuriKivshar.Photonicflatbandresonances in multiple light scattering. Phys. Rev. Lett., 132:043803, Jan 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92953 | - |
| dc.description.abstract | 給定一個系統(我們想描述的客體),例如一顆在真空中的電介質球,然後我們用某個從遠處發出的單頻電磁波持續照射它,它會持續散射這些電磁波;這是一個光與物質交互作用的例子,古典電動力學的彈性散射模型(如米理論)讓我們可以描述這個系統中各個位置和時間的電磁場到一定的精確度。然而,本論文 將指出,古典彈性散射模型會違反調和場的坡印廷定理以及背後可能的原因,例如物質的電磁性質會隨加熱改變,因此穩態電磁性質的假設不成立,或是能量有可能透過非彈性散射進入其他頻率域,以及因為熱傳需要的溫度梯度違反均質假設。最後,本文會回顧兩個受電磁波照射的雙體系統的中央間隙電漿生成機制的理論,並指出極化電荷造成的電場熱點促使了電漿的生成。 | zh_TW |
| dc.description.abstract | Given a system (what we want to describe), for example, a dielectric sphere in vacuum; if we illuminate this sphere continuously using a monochromatic plane wave, the sphere will keep scattering the plane wave. This is an example of light-matter interaction, and classical elastic scatter model such as Mie theory can describe this system to a certain accuracy. However, this thesis will show that the classical elastic scatter model will violate Poynting’s theorem for harmonic fields and discuss the probable cause, such as the violation of steady-state assumption of electromagnetic property because of heating, or the energy may enter other frequency through inelastic scatter, and the temperature gradient needed for heat transfer violates the homogeneity assumption. Finally, this thesis will discuss two theories regarding the mechanism of plasma formed between the gap of dimer system under electromagnetic irradiation, and favor the theory that the electric field hot-spot due to mutual enhancement of polarization charges causes the plasma formation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-08T16:13:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-08T16:13:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xv Denotation xvii Chapter 1 Introduction to Polarization Charges 1 1.1 Polarization P and the displacement electric field D 2 1.2 Permittivity of a material 4 1.2.1 Fourier Transform 4 1.2.2 Frequency domain of permittivity and fields 4 1.2.3 Nomenclature of the properties of permittivity of a medium 6 1.2.3.1 Isotropic versus anisotropic 6 1.2.3.2 Linear versus nonlinear 6 1.2.3.3 Homogeneous versus inhomogeneous 6 1.2.3.4 Dispersive versus nondispersive 6 1.2.3.5 Complex permittivity (loss or gain in the medium) 7 1.2.3.6 Relative permittivity 7 1.2.3.7 Loss tangent 8 1.3 Single dielectric sphere in vacuum 8 Chapter 2 Dielectric Dispersion and Relaxation 11 2.1 Dielectric dispersion 11 2.2 Dielectric relaxation 11 2.2.1 Debye function 12 2.3 Dielectric constant of water at atmospheric pressure and different temperatures 12 2.4 An example of the quasi-static limit in electrodynamics: Rayleigh Scatter 14 2.4.1 An elastic scatter model 14 2.4.2 Elastic scatter of a water sphere hit by 2.45 GHz microwave: quasi-static case 15 Chapter 3 Resonances 17 3.1 Theory 17 3.2 Formulation 18 3.2.1 Macroscopic Maxwell equations 19 3.2.2 Wave equations 19 3.3 Mie resonance in a single water sphere 20 3.3.1 Analytical solutions 20 3.4 Application 24 Chapter 4 Dielectric Heating 25 4.1 Theory 25 4.1.1 Poynting's theorem (1884 CE) 25 4.1.2 Poynting's theorem in linear dispersive medium with losses 26 4.2 Dielectric heating in an uniform AC electric field 27 Chapter 5 Violation of Poynting's Theorem in Frequency Domain in Mie Theory and Probable Causes 29 5.1 Violation 30 5.2 Evidence from other literature 31 5.3 Probable causes 31 5.3.1 Inelastic scatter 31 5.3.2 Non steady-state 31 5.3.3 Inhomogeneity 32 5.4 Short remarks 32 Chapter 6 Two Theories Regarding the Etiology of Plasma Formation Between Aqueous Dimers 35 6.1 MDRs (2019 CE) 35 6.1.1 MDRs 35 6.1.2 Thermal behavior of the system 36 6.2 Polarization charges (2021 CE) 36 6.2.1 Mutual enhancement of polarization between dimers 36 6.2.2 Forces between dimers 37 6.2.3 Electromagnetic fields between dimers 37 6.2.4 Configuration that only MDRs occur 38 6.2.5 Evidence from other literatures 38 References 41 Appendix A Derivation of Poynting’s Theorem in Time Domain and Time Harmonics 45 | - |
| dc.language.iso | en | - |
| dc.subject | 雙體 | zh_TW |
| dc.subject | 極化電荷 | zh_TW |
| dc.subject | 坡印廷定理 | zh_TW |
| dc.subject | 米理論 | zh_TW |
| dc.subject | 電場熱點 | zh_TW |
| dc.subject | electric field hotspot | en |
| dc.subject | Mie theory | en |
| dc.subject | Poynting's theorem | en |
| dc.subject | dimer | en |
| dc.subject | polarization charges | en |
| dc.title | 電介質系統於時間調和電磁場下之共振與極化電荷及其熱效應,能量傳輸與交互電場增強之探討 | zh_TW |
| dc.title | Dielectric Systems under Time Harmonic Electromagnetic Field - the effect of resonances and polarization charges, and the resulting heating, energy transport and mutual enhancement of electric field | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 姜惟元;劉偉強;陳仕宏 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Yuan Chiang;Wai-Keung Lau;Shih-Hung Chen | en |
| dc.subject.keyword | 極化電荷,雙體,電場熱點,米理論,坡印廷定理, | zh_TW |
| dc.subject.keyword | polarization charges,dimer,electric field hotspot,Mie theory,Poynting's theorem, | en |
| dc.relation.page | 46 | - |
| dc.identifier.doi | 10.6342/NTU202400923 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-05 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 4.06 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
