Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92935
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊台鴻zh_TW
dc.contributor.advisorTai-Horng Youngen
dc.contributor.author鐘培峰zh_TW
dc.contributor.authorPei-Feng Chungen
dc.date.accessioned2024-07-08T16:08:40Z-
dc.date.available2024-07-09-
dc.date.copyright2024-07-08-
dc.date.issued2024-
dc.date.submitted2024-07-05-
dc.identifier.citationMa, Y., S. De, and C. Chen, Syntheses of cyclic guanidine-containing natural products. Tetrahedron, 2015. 71(8): p. 1145-1173.
Raczyńska, E.D., et al., Consequences of proton transfer in guanidine. Journal of physical organic chemistry, 2003. 16(2): p. 91-106.
Bailey, P.J. and S. Pace, The coordination chemistry of guanidines and guanidinates. Coordination Chemistry Reviews, 2001. 214(1): p. 91-141.
Ube, H., D. Uraguchi, and M. Terada, Efficient synthetic protocol for substituted guanidines via copper (I)-mediated intermolecular amination of isothiourea derivatives. Journal of organometallic chemistry, 2007. 692(1-3): p. 545-549.
Schug, K.A. and W. Lindner, Noncovalent binding between guanidinium and anionic groups: focus on biological-and synthetic-based arginine/guanidinium interactions with phosph [on] ate and sulf [on] ate residues. Chemical reviews, 2005. 105(1): p. 67-114.
Scibior, D. and H. Czeczot, Arginine--metabolism and functions in the human organism. Postepy Higieny i Medycyny Doswiadczalnej (Online), 2004. 58: p. 321-332.
Kreider, R.B. and J.R. Stout, Creatine in health and disease. Nutrients, 2021. 13(2): p. 447.
Roel, M., et al., Marine guanidine alkaloids crambescidins inhibit tumor growth and activate intrinsic apoptotic signaling inducing tumor regression in a colorectal carcinoma zebrafish xenograft model. Oncotarget, 2016. 7(50): p. 83071.
Sidoryk, K., et al., The synthesis of indolo [2, 3-b] quinoline derivatives with a guanidine group: Highly selective cytotoxic agents. European Journal of Medicinal Chemistry, 2015. 105: p. 208-219.
Pandya, N., et al., Discovery of a potent Guanidine derivative that selectively binds and stabilizes the human BCL-2 G-quadruplex DNA and downregulates the transcription. Gene, 2023. 851: p. 146975.
Dai, Y., et al., Pro-apoptotic cationic host defense peptides rich in lysine or arginine to reverse drug resistance by disrupting tumor cell membrane. Amino acids, 2017. 49: p. 1601-1610.
Tan, Z., Y.K. Dhande, and T.M. Reineke, Cell penetrating polymers containing guanidinium trigger apoptosis in human hepatocellular carcinoma cells unless conjugated to a targeting N-acetyl-galactosamine block. Bioconjugate Chemistry, 2017. 28(12): p. 2985-2997.
Grenda, K., et al., An analytical approach to elucidate the architecture of polyethyleneimines. Journal of Applied Polymer Science, 2022. 139(7): p. 51657.
von Harpe, A., et al., Characterization of commercially available and synthesized polyethylenimines for gene delivery. Journal of controlled release, 2000. 69(2): p. 309-322.
Prud’homme, A. and F. Nabki, Comparison between linear and branched polyethylenimine and reduced graphene oxide coatings as a capture layer for micro resonant CO2 gas concentration sensors. Sensors, 2020. 20(7): p. 1824.
Lungwitz, U., et al., Polyethylenimine-based non-viral gene delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 2005. 60(2): p. 247-266.
Akinc, A., et al., Exploring polyethylenimine‐mediated DNA transfection and the proton sponge hypothesis. The Journal of Gene Medicine: A cross‐disciplinary journal for research on the science of gene transfer and its clinical applications, 2005. 7(5): p. 657-663.
Zhao, C. and B. Zhou, Polyethyleneimine-based drug delivery systems for cancer theranostics. Journal of Functional Biomaterials, 2022. 14(1): p. 12.
El-Sayed, A., S. Futaki, and H. Harashima, Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. The AAPS journal, 2009. 11: p. 13-22.
Sabin, J., et al., New insights on the mechanism of polyethylenimine transfection and their implications on gene therapy and DNA vaccines. Colloids and Surfaces B: Biointerfaces, 2022. 210: p. 112219.
Hong, S., et al., Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. Bioconjugate chemistry, 2006. 17(3): p. 728-734.
Mogaki, R., et al., Guanidinium-based “molecular glues” for modulation of biomolecular functions. Chemical Society Reviews, 2017. 46(21): p. 6480-6491.
Stanzl, E.G., et al., Fifteen years of cell-penetrating, guanidinium-rich molecular transporters: basic science, research tools, and clinical applications. Accounts of chemical research, 2013. 46(12): p. 2944-2954.
Ji, Y.-R., et al., Selective regulation of neurons, glial cells, and neural stem/precursor cells by poly (allylguanidine)-coated surfaces. ACS applied materials & interfaces, 2019. 11(51): p. 48381-48392.
Frost, T.S., et al., Permeability of epithelial/endothelial barriers in transwells and microfluidic bilayer devices. Micromachines, 2019. 10(8): p. 533.
Bao, N., J. Wang, and C. Lu, Microfluidic electroporation for selective release of intracellular molecules at the single‐cell level. Electrophoresis, 2008. 29(14): p. 2939-2944.
Takechi-Haraya, Y., et al., Effect of hydrophobic moment on membrane interaction and cell penetration of apolipoprotein E-derived arginine-rich amphipathic α-helical peptides. Scientific Reports, 2022. 12(1): p. 4959.
Chakrabarty, B., A. Ghoshal, and M. Purkait, Effect of molecular weight of PEG on membrane morphology and transport properties. Journal of membrane science, 2008. 309(1-2): p. 209-221.
Ammendolia, D.A., W.M. Bement, and J.H. Brumell, Plasma membrane integrity: implications for health and disease. BMC biology, 2021. 19: p. 1-29.
Stewart, M.P., R. Langer, and K.F. Jensen, Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chemical reviews, 2018. 118(16): p. 7409-7531.
Yu, C., et al., A guanidinium-rich polymer for efficient cytosolic delivery of native proteins. Bioconjugate chemistry, 2018. 30(2): p. 413-417.
Wright, L.R., J.B. Rothbard, and P.A. Wender, Guanidinium rich peptide transporters and drug delivery. Current Protein and Peptide Science, 2003. 4(2): p. 105-124.
Qian, Y., et al., Synthesis, molecular modeling and biological evaluation of guanidine derivatives as novel antitubulin agents. Bioorganic & medicinal chemistry, 2010. 18(23): p. 8218-8225.
Teramura, Y., et al., Behavior of synthetic polymers immobilized on a cell membrane. Biomaterials, 2008. 29(10): p. 1345-1355.
Kim, T.-i., M. Lee, and S.W. Kim, A guanidinylated bioreducible polymer with high nuclear localization ability for gene delivery systems. Biomaterials, 2010. 31(7): p. 1798-1804.
Guo, P., et al., Dual functionalized amino poly (glycerol methacrylate) with guanidine and Schiff-base linked imidazole for enhanced gene transfection and minimized cytotoxicity. Journal of materials chemistry B, 2015. 3(34): p. 6911-6918.
Xing, H., et al., A biodegradable poly (amido amine) based on the antimicrobial polymer polyhexamethylene biguanide for efficient and safe gene delivery. Colloids and Surfaces B: Biointerfaces, 2019. 182: p. 110355.
Chivu, A., et al., Cellular gene delivery via poly (hexamethylene biguanide)/pDNA self-assembled nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2021. 158: p. 62-71.
Yekai, W., et al., Expression and clinical significance of ZO-1 in patients with non-small cell lung cancer. Zhongguo Fei Ai Za Zhi, 2011. 14(2).
Maruhashi, R., et al., Elevation of sensitivity to anticancer agents of human lung adenocarcinoma A549 cells by knockdown of claudin-2 expression in monolayer and spheroid culture models. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2018. 1865(3): p. 470-479.
El Harane, S., et al., Cancer spheroids and organoids as novel tools for research and therapy: state of the art and challenges to guide precision medicine. Cells, 2023. 12(7): p. 1001.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92935-
dc.description.abstract胍基和胺基具有與細胞膜反應並進入細胞的能力,此特徵在癌症疾病治療上具有很高的效益與潛力。在研究中,帶有胍基的聚丙烯胍被合成,並將此材料與帶有胺基的聚乙烯亞胺進行比較,探討其與癌細胞膜的作用方式及對細胞通透性變化的影響。結論指出,聚乙烯亞胺能在細胞存率高的同時造成癌細胞膜的完好性破壞,使分子從細胞內漏到細胞外的通透性上升,聚丙烯胍則無顯示此現象。值得關注的是,聚乙烯亞胺造成的細胞膜受損並不會增加分子進入細胞的能力,顯示出只影響通細胞內到細胞外的單向通透性。除此之外,我們觀測到活癌細胞核膜能夠有效地阻擋聚丙烯胍和聚乙烯亞胺的進入,而固定後的細胞則沒有此效果。在結合能力實驗中,相比於聚乙烯亞胺,聚丙烯胍展現出更強的脫氧核醣核酸連結能力。最後,從細胞滲透性測試中,我們得知聚丙烯胍和聚乙烯亞胺對癌細胞單層的緊密連接有具大的破壞力,造成緊密連接的表現量降低並使細胞間隙運輸的顯著上升。
聚丙烯胍具有比聚乙烯亞胺強的脫氧核醣核酸連結能力,此特性未來在基因治療上能有很大的應用。另外,聚丙烯胍和聚乙烯亞胺都能破壞緊密連結的表現,未來能實驗設計能在癌細胞球上進行,測試此兩種材料在模擬的癌細胞環境中,能否同樣有降低緊密連結表現量的效果,並評估兩種材料在臨床的應用性。
zh_TW
dc.description.abstractGuanidine and amine groups possess the ability to interact with cell membranes and penetrate cells, demonstrating significant potential and benefits for cancer treatment. In this study, we synthesized poly(allylguanidine) (PAG) containing a guanidine group and compared it with polyethylenimine (PEI) containing an amine group to investigate their interaction mechanisms with cancer cell membranes and their effects on cellular permeability. The study revealed that PEI destroyed the integrity of the cancer cell membrane while maintaining high cell viability, resulting in an increase in molecule permeability from the inside to the outside of the cell, a phenomenon not observed with PAG. Notably, the membrane damage caused by PEI did not enhance the permeability of molecules entering the cells, indicating that it only affected unidirectional permeability from the intracellular to the extracellular space. Additionally, we observed that the nuclear membranes of live cancer cells effectively excluded the entry of both PAG and PEI, whereas fixed cells did not exhibit this effect. In binding ability experiments, PAG demonstrated stronger DNA binding ability compared to PEI. Finally, in cellular permeability tests, we found that both PAG and PEI had a disruptive effect on tight junctions of cancer cell monolayer, leading to a decrease in tight junction expression and a significant increase in paracellular transport.
PAG had stronger DNA binding capabilities than PEI, which had significant applications in gene therapy in the future. Additionally, both PAG and PEI could disrupt the expression of tight junctions. Future experimental designs could involve testing these two materials on cancer cell spheroids to determine if they similarly reduce tight junction expression in a mimicking cancer cell environment. This would help evaluate the clinical applicability of both materials.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-08T16:08:40Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-08T16:08:40Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Contents vi
List of Figures ix
Chapter1: Introduction 1
1.1 Guanidine group 1
1.2 Guanidine group in cancer cell treatment 2
1.3 Interaction between guanidine group and cell membrane 3
1.4 Polyethyleneimine (PEI) 3
1.5 PEI in cancer cell treatment 4
1.6 Interaction between PEI and cell membrane 6
1.7 Salt bridge 6
1.8 Guanidinium group uptake by cells 9
1.9 Purpose of this study 10
Chapter2: Materials and Methods 11
2.1 Materials 11
2.2 Experimental equipment 13
2.3 Synthesis of AG and PAG 14
2.4 Cell culture 15
2.5 Cell viability test and LDH assay 15
2.6 FDA-PI double staining 16
2.7 Scanning probe microscope 16
2.8 Synthesis of FITC-labeled PAG conjugate 17
2.9 Synthesis of FITC-labeled PEI conjugate 17
2.10 Intracellular tracking of PAG and PEI 18
2.11 Gel retardation assay 18
2.12 Cellular permeability tests 19
2.13 Immunofluorescence staining 20
2.14 Statistical analysis 21
Chapter3: Results 22
3.1 Characterizations of AG and PAG 22
3.2 Viability and LDH leakage 24
3.3 Integrity of cell membrane 26
3.4 Morphological changes of phospholipid 27
3.5 Intracellular tracking of PAG and PEI 30
3.6 Gel retardation assay 33
3.7 Cellular permeability 35
3.8 Effect of PAG and PEI on tight junction protein 37
Chapter4: Discussion 39
4.1 Molecular diffusion and membrane permeability 39
4.2 Interaction with phospholipids 41
4.3 Intracellular tracking and nuclear exclusion 42
4.4 Tight junctions and paracellular transport 43
Chapter5: Conclusion 44
Chapter6: Supplementary information 45
References 46
-
dc.language.isoen-
dc.subject聚乙烯亞胺zh_TW
dc.subject聚丙烯胍zh_TW
dc.subject細胞間隙運輸zh_TW
dc.subject緊密連結zh_TW
dc.subject細胞通透性zh_TW
dc.subject癌細胞膜zh_TW
dc.subjectmembrane permeabilityen
dc.subjectparacellular transporten
dc.subjectpoly(allylguanidine)en
dc.subjectpolyethylenimineen
dc.subjectcancer cell membraneen
dc.subjecttight junctionen
dc.title比較聚丙烯胍和聚乙烯亞胺:與癌細胞膜的作用機制和癌細胞通透性變化zh_TW
dc.titleComparing Poly(allylguanidine) and Polyethylenimine: the mechanism of interacting with cancer membrane, cellular and epithelial permeability changeen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee賴君義;王大銘zh_TW
dc.contributor.oralexamcommitteeJuin-Yih Lai;Da-Ming Wangen
dc.subject.keyword聚丙烯胍,聚乙烯亞胺,癌細胞膜,細胞通透性,緊密連結,細胞間隙運輸,zh_TW
dc.subject.keywordpoly(allylguanidine),polyethylenimine,cancer cell membrane,membrane permeability,tight junction,paracellular transport,en
dc.relation.page49-
dc.identifier.doi10.6342/NTU202401517-
dc.rights.note未授權-
dc.date.accepted2024-07-05-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
3.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved