請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92934完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許鉅秉 | zh_TW |
| dc.contributor.advisor | Jiuh-Biing Sheu | en |
| dc.contributor.author | 林萱 | zh_TW |
| dc.contributor.author | Hsuan Lin | en |
| dc.date.accessioned | 2024-07-08T16:08:23Z | - |
| dc.date.available | 2024-07-09 | - |
| dc.date.copyright | 2024-07-08 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-04 | - |
| dc.identifier.citation | 王文科(1995)。教育研究法。五南。
黃佳寗(2022)。國際淨零排碳趨勢對臺灣產業的影響:從國際減碳評比報告來觀察。經濟前瞻,201,29-33。 陳李綢(2000)。個案研究。心理出版。 陳恭(2017)。智能合約的發展與應用。財金資訊季刊,90,33-39。 陳萬淇(1992)。個案研究法。華泰文化。 張紹勳(2000)。研究方法。滄海書局。 葉重新(2001)。教育研究法。心理出版。 台積公司110年度、111年度永續報告書。 台灣積體電路製造股份有限公司民國一百一十年度、一百一十一年度年報。 台積公司110年度、111年度氣候相關財務揭露報告。 台積公司民國110年度、111年度環境損益分析報告。 產業價值鏈資訊平台。https://ic.tpex.org.tw/。 Bambara, J. J., Allen, P. R., Iyer, K., Madsen, R., Lederer, S., & Wuehler, M. (2018). Blockchain: A practical guide to developing business, law, and technology solutions. McGraw hill professional. Bolton, S. C., Kim, R. C., & O’Gorman, K. D., (2011). Corporate social responsibility as a dynamic internal organizational process: A case study. Journal of business ethics, 101, 61-74. Brocas, I., Carrillo, J. D., & Sachdeva, A., (2018). The path to equilibrium in sequential and simultaneous games: A mousetracking study. Journal of Economic Theory, 178, 246-274. Casino, F., Dasaklis, T. K., & Patsakis, C. (2019). A systematic literature review of blockchain-based applications: Current status, classification and open issues. Telematics and informatics, 36, 55-81. Chiou, J.-R., & Hu, J.-L., (2001). Environmental Research Joint Ventures under Emission Taxes. Environmental and Resource Economics, 20, 129-146. Cui, P., Dixon, J., Guin, U., & Dimase, D., (2019). A Blockchain-Based Framework for Supply Chain Provenance. IEEE Access, 7, 157113-157125. Doney, P. M., Barry, J. M., & Abratt, R., (2007). Trust determinants and outcomes in global B2B services. European Journal of Marketing, 41(9/10), 1096-1116. DuPont 2023 Sustainability Report. Dutta, P., Choi, T.M., Somani, S., & Butala, R., (2020). Blockchain technology in supply chain operations: Applications, challenges and research opportunities. Transportation Research Part E: Logistics and Transportation Review, 142, 102067. Dyllick, T., & Hockerts, K., (2002). Beyond the business case for corporate sustainability. Business strategy and the environment, 11.2, 130-141. European Commission, (2022). Directive on corporate sustainability due diligence. Franke, B., Gao Fritz, Q. & Stenzel, A., (2023). The (Limited) Power of Blockchain Networks for Information Provision. Management Science, 70(2), v-vi, 671-1342, iii-iv. Greenhouse Gas Protocol, (2013). Technical Guidance for Calculating Scope 3 Emissions. Hayes, K., Meyers, N., Sweet, C., Ashenef, A., Johann, T., Lieberman, M., & Kochalko, D. (2022). Securing the chain of custody and integrity of data in a global north–south partnership to monitor the quality of essential medicines. Blockchain in Healthcare Today, 5. Hidayati, S., (2011). Cash-in and cash-out agents for mobile money in Indonesia. Leadership Program for Financial Inclusion-Policy Memoranda, 41-45. Ho, M. S., Morgenstern, R. D., & Shih, J.-S., (2008). Impact of Carbon Price Policies on U.S. Industry. RFF Discussion Paper, 08-37. Hoek, R. V., (2019). Exploring blockchain implementation in the supply chain: Learning from pioneers and RFID research. International Journal of Operations & Production Management, 39(6/7/8), 829-859. Hughes, L., Dwivedi, Y. K., Misra, S. K., Rana, N. P., Raghavan, V., & Akella, V., (2019). Blockchain research, practice and policy: Applications, benefits, limitations, emerging research themes and research agenda. The International Journal of Information Management, 49, 114-129. International Organization for Standardization, (2018). ISO 14064-1:2018 Greenhouse gases — Part 1: Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals. Iyengar, G., Saleh, F., Sethuraman, J., & Wang, W., (2023). Blockchain Adoption in a Supply Chain with Manufacturer Market Power. Management Science, 0(0). Khan, K. M., Arshad, J., & Khan, M. M. (2018). Secure digital voting system based on blockchain technology. International Journal of Electronic Government Research (IJEGR), 14(1), 53-62. Khan, S. A. R., Godil, D. I., Jabbour, C. J. C., Shujaat, S., Razzaq, A., & Yu, Z. (2021). Green data analytics, blockchain technology for sustainable development, and sustainable supply chain practices: evidence from small and medium enterprises. Annals of Operations Research, 1-25. Kim, J.-S., & Shin, N., (2019). The Impact of Blockchain Technology Application on Supply Chain Partnership and Performance. Sustainability, 1(21), 6181. Kouhizadeh, M., Sarkis, J., & Zhu, Q. (2019). At the nexus of blockchain technology, the circular economy, and product deletion. Applied Sciences, 9(8), 1712. Kreps, D. M., (1992). Static Choice in the Presence of Unforeseen Contingencies. Economic Analysis of Markets and Games: Essays in Honor of Frank Hahn. Krishnan, S., Balas, V. E., Julie, E. G., Yesudhas, H. R., Balaji, S., & Kumar, R. (Eds.). (2020). Handbook of research on blockchain technology. Academic Press. Kumar, N., (1996). The power of trust in manufacturer-retailer relationships. Harvard Business Review, 74(6), 92-106. Liu, M., Yu, F. R., Teng, Y., Leung, C. M., & Song, M., (2018). Distributed Resource Allocation in Blockchain-Based Video Streaming Systems with Mobile Edge Computing. IEEE Transactions on Wireless Communications, 18(1), 695-708. Liu, X., Dou, Z., & Yang, W., (2021). Research on Influencing Factors of Cross Border E-Commerce Supply Chain Resilience Based on Integrated Fuzzy DEMATEL-ISM. IEEE Access, 9, 36140-36153. Lozano, R., (2007). Collaboration as a pathway for sustainability. Sustainable Development, 15(6), 370-381. Manupati, V.K., Jedidah, S. J., Gupta, S., Bhandari, A., & Min, H., (2019). Blockchain technology for enhancing supply chain resilience. Business Horizons, 62(1), 35-45. Marchant, G. E., Cooper, Z., & Gough-Stone, P. J. (2022). Bringing technological transparency to tenebrous markets: the case for using blockchain to validate carbon credit trading markets. Nat. Resources J., 62, 159. Merriam, S. B., (1998). Qualitative Research and Case Study Applications in Education. Revised and Expanded from" Case Study Research in Education.". Jossey-Bass Publishers. Min, H., (2019). Blockchain technology for enhancing supply chain resilience. Business Horizons, 62.1, 35-45. Monrat, A. A., Schelén, O., & Andersson, K. (2019). A survey of blockchain from the perspectives of applications, challenges, and opportunities. Ieee Access, 7, 117134-117151. Neumann, J., & Morgenstern, O., (1944). Theory of games and economic behavior. Notomoro (2023, October 15). Blockchain Cost Analysis: Calculating Expenses for Your Next Blockchain Implementation. Webisoft. https://webisoft.com/articles/blockchain-cost/ O'Leary, D. E. (2019). Some issues in blockchain for accounting and the supply chain, with an application of distributed databases to virtual organizations. Intelligent Systems in Accounting, Finance and Management, 26(3), 137-149. Pedreira, H. B., & Melo, T. J., (2020). Supply Chain Coopetition: A Simulation Model to Explore Competitive Advantages in Logistics. Qu, G., Wang, Y., Ling, X., Qu, W., Zhang, Q., & Xu, Z., (2021). Low-Carbon Supply Chain Emission Reduction Strategy Considering the Supervision of Downstream Enterprises Based on Evolutionary Game Theory. Sustainability, 13(5), 2827. Queiroz, M. M., & Wamba, S. F. (2019). Blockchain adoption challenges in supply chain: An empirical investigation of the main drivers in India and the USA. International Journal of Information Management, 46, 70-82. Rahmanzadeh, S., Pishvaee, M. S., & Rasouli, M. R. (2020). Integrated innovative product design and supply chain tactical planning within a blockchain platform. International Journal of Production Research, 58(7), 2242-2262. Raj, A., Biswas, I., & Srivastava, S. K., (2018). Designing supply contracts for the sustainable supply chain using game theory. Journal of Cleaner Production, 185, 275-284. Ramkumar, M., (2019). Optimization of a multi-echelon sustainable production-distribution supply chain system with lead time consideration under carbon emission policies. Computers & Industrial Engineering, 135, 1312-1323. Rogelj, J., Geden, O., Cowie, A., & Reisinger, A., (2021). Net-zero emissions targets are vague: three ways to fix. Nature, 591, 365-368. Seifi, S., (2017). Chapter 7: Game theory as a research tool for sustainability. Handbook of Research Methods in Corporate Social Responsibility, 111-124. Sharma, P. K., Kumar, N., & Park, J. H. (2018). Blockchain-based distributed framework for automotive industry in a smart city. IEEE Transactions on Industrial Informatics, 15(7), 4197-4205. Slantchev, B. L., (2009). Game Theory: Elements of Basic Models. Department of Political Science, University of California–San Diego. The Intergovernmental Panel on Climate Change, (2021). Climate Change 2021: The Physical Science Basis. United Nations, (1992). United Nations Framework Convention on Climate Change. Von Neumann, J., (1928). On the Theory of Games of Strategy. Contributions to the Theory of Games (AM-40), IV. World Commission on Environment and Development, (1987). Our Common Future. Oxford University Press. Xu, X., Bandara, H. D., Lu, Q., Weber, I., Bass, L., & Zhu, L. (2021, March). A decision model for choosing patterns in blockchain-based applications. In 2021 IEEE 18th International conference on software architecture (ICSA) (pp. 47-57). IEEE. Xu, X., Weber, I., & Staples, M. (2019). Architecture for blockchain applications. Cham: Springer. Yang, Q., & Jian, Z., (2020). Research on the Correlation between Information Technology Capability and Enterprise’s Sustainable Competitive Advantage Based on Game Theory. IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC),1544-1548. Yin, R. K., (1994). Discovering the Future of the Case Study. Method in Evaluation Research. Evaluation Practice, 15(3), 283-290. Zheng, X.-X., Liu, Z., Li, W., Huang, J., & Chen, J., (2019). Cooperative game approaches to coordinating a three-echelon closed-loop supply chain with fairness concerns. The International Journal of Production Economics, 212, 92-110. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92934 | - |
| dc.description.abstract | 在氣候變遷日益嚴峻的背景下,供應鏈中的碳排放議題已成為當今企業面臨的重要挑戰。由於供應鏈中上游範疇一之碳排將轉嫁至下游範疇三,合作減排成為解決供應鏈碳排放問題的關鍵。然而,在供應鏈合作減排的過程中,面臨著資訊不透明等考驗。因此,建立具資訊安全的碳資訊揭露機制成為其中一個解決方案。在這方面,區塊鏈技術因其公開、安全、不可修改的特性,被視為解決供應鏈管理和碳排放議題的有效工具。雖然已有諸多學者運用賽局理論進行供應鏈相關研究,但針對導入區塊鏈之供應鏈合作模式,特別是成本分攤的探討仍有限,因此成為本論文之研究動機。
本研究以半導體產業中的T公司及其供應商為研究個案,運用質化的個案分析與量化的賽局模型,探討影響T公司碳排之關鍵因素,並建構賽局模型,將導入區塊鏈成本之分攤比例及供應成本作為決策變數,以最大化永續價值為目標,探討T公司區塊鏈導入成本之最適分攤比例。 透過數值模擬與重要參數的敏感度分析之結果,本研究得以分析T公司導入區塊鏈成本之最適分攤模式,以及導入區塊鏈之價值。本研究提出了減排投入的最適成本分攤模式概念基礎,旨在協助企業在面臨相似情境時有更多思考的方向,為綠色供應鏈管理領域做出些許貢獻。 | zh_TW |
| dc.description.abstract | In light of the increasingly severe impacts of climate change, managing carbon emissions within the supply chain has emerged as a critical imperative for contemporary business. Recognizing that the scope one emissions originating from the upstream section are often transferred to the scope three emissions downstream, collaborative efforts to mitigate emissions have become paramount in addressing carbon emissions challenges across the entire supply chain. However, the collaborative process faces hurdles such as information opacity, underscoring the urgent need for a secure mechanism to disclose carbon-related data. In this context, blockchain technology stands out as a promising solution, given its attributes of transparency, security, and immutability. While game theory has been utilized in supply chain studies, there remains a limited discussion on the integration of blockchain into the supply chain cooperation model, particularly concerning cost allocation.
This study delves into the case of T Company and its semiconductor industry suppliers, employing a blend of qualitative case analysis and quantitative game models to discern the drivers behind T Company’s carbon emissions, and determine the cost allocation for introducing blockchain technology, aiming to ascertain the optimal apportionment ratio for T Company's blockchain implementation costs. By means of numerical simulations and sensitivity analysis on critical parameters, we unveil the optimal allocation model for the costs associated with blockchain adoption at T Company, along with the value derived from its implementation. This research lays down the foundational framework for an optimal cost allocation model in emission reduction investments. It seeks to furnish companies faced with similar scenarios with diverse strategic avenues, contributing to the realm of green supply chain management. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-08T16:08:23Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-08T16:08:23Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 III 英文摘要 IV 第一章、緒論 1 1.1 研究背景與動機 1 1.2 研究目標 2 1.3 研究流程與架構 3 第二章、文獻回顧與探討 6 2.1 碳排淨零(Net Zero) 6 2.1.1 碳排淨零之重要意義 6 2.1.2 國際淨零政策 6 2.1.3 碳排淨零的影響 7 2.1.4 碳排淨零之挑戰與建議行動 8 小結 9 2.2 區塊鏈的應用 10 2.2.1 區塊鏈定義與特性 10 2.2.2 區塊鏈技術應用發展 10 2.2.3 區塊鏈應用面向 11 2.2.4 區塊鏈之淨零應用方向 11 2.2.5 區塊鏈應用之挑戰 12 小結 12 2.3 個案研究法 13 2.3.1 個案研究法定義與特性 13 2.3.2 採用個案研究法之目的 13 2.3.3 個案研究法之類型 14 2.3.4 個案研究法之資料來源 15 2.3.5 應用個案研究法於企業永續經營相關研究回顧 15 小結 16 2.4 賽局理論 16 2.4.1 賽局理論之定義與發展 16 2.4.2 賽局理論之類型 17 2.4.3 應用賽局理論於企業永續經營相關研究回顧 17 小結 19 第三章、個案研究 21 3.1 半導體產業供應鏈 21 3.1.1 國內半導體產業供應鏈簡介 21 3.1.2 T公司於半導體產業之重要性與其碳排關鍵製程 22 小結 24 3.2 T公司上游廠商與其對T公司範疇三碳排之影響 24 3.2.1 範疇三溫室氣體盤查範疇 24 3.2.2 T公司上游供應商 26 3.2.3 上游供應商對T公司範疇三排放之影響 27 小結 32 3.3 T公司永續策略與減碳作為 32 3.3.1 T公司永續策略 32 3.3.2 T公司供應鏈減碳作為 33 3.3.3 T公司重要供應商之永續供應鏈計劃 33 小結 34 3.4 區塊鏈應用於供應鏈減碳之影響與效益 35 3.4.1 科技產業區塊鏈應用實例 35 3.4.2 區塊鏈淨零應用實例 36 3.4.3 淨零目標下導入區塊鏈之影響 36 小結 37 第四章、研究模型之建構 38 4.1 數學模型基本假設 38 4.1.1 領導者與跟隨者之設定 38 4.1.2 永續價值 38 4.1.3 供應價格與存貨問題 39 4.1.4 成本問題 40 4.2 建構數學模型 40 4.2.1 參數定義 40 4.2.2 數學模型的發展 43 小結 44 第五章、數值模擬分析 46 5.1 參數參考值設定 46 5.1.1 T公司相關參數設定依據 46 5.1.2 供應商相關參數設定依據 47 5.1.3 區塊鏈相關參數設定依據 47 5.2 數值模擬與討論 48 5.2.1 數值模擬結果 48 5.2.2 導入區塊鏈之價值分析 49 5.3 敏感度分析 50 5.3.1 T公司單位產品碳排放成本 50 5.3.2 T公司範疇三佔總碳排之比例 52 5.3.3 導入區塊鏈後範疇三碳排減少的比例 53 5.3.4 導入區塊鏈後供應鏈凝聚力的提升幅度 55 小結 56 6第六章、結論與建議 57 6.1 研究結論與貢獻 57 6.2 研究限制與展望 58 參考文獻 59 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 半導體產業 | zh_TW |
| dc.subject | 賽局理論 | zh_TW |
| dc.subject | 碳排淨零 | zh_TW |
| dc.subject | 成本轉嫁 | zh_TW |
| dc.subject | 區塊鏈 | zh_TW |
| dc.subject | Game Theory | en |
| dc.subject | Blockchain | en |
| dc.subject | Cost allocation | en |
| dc.subject | Semiconductor industry | en |
| dc.subject | Net Zero Emissions | en |
| dc.title | 碳排淨零目標下半導體產業導入區塊鏈之最適化決策 | zh_TW |
| dc.title | Optimal Decision for Implementing Blockchain Technology in the Semiconductor Industry to Achieve Net-Zero Carbon Emissions | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 胡均立;陳穆臻 | zh_TW |
| dc.contributor.oralexamcommittee | Jin-Li Hu;Mu-Chen Chen | en |
| dc.subject.keyword | 碳排淨零,半導體產業,成本轉嫁,區塊鏈,賽局理論, | zh_TW |
| dc.subject.keyword | Net Zero Emissions,Semiconductor industry,Cost allocation,Blockchain,Game Theory, | en |
| dc.relation.page | 64 | - |
| dc.identifier.doi | 10.6342/NTU202401504 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-07-05 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 商學研究所 | - |
| 顯示於系所單位: | 商學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 1.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
