Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92929
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱祈榮zh_TW
dc.contributor.advisorChyi-Rong Chiouen
dc.contributor.author詹為巽zh_TW
dc.contributor.authorWei-Hsun Chanen
dc.date.accessioned2024-07-08T16:06:26Z-
dc.date.available2024-07-09-
dc.date.copyright2024-07-08-
dc.date.issued2024-
dc.date.submitted2024-07-04-
dc.identifier.citation內政部 (2019) 內政部戶政司全球資訊網人口統計資料庫。 https://www.ris.gov.tw/app/portal/346。
王義仲、趙宗玲、林志欽 (2016) 基隆市空義品質淨化區林木生長之碳削減調查。華岡農科學報 38:53-68。
行政院環境保護署(2021)中華民國國家溫室氣體清冊報告。臺北市,https://unfccc.saveoursky.org.tw/nir/tw_nir_2021.php
李宣德、馮豐隆 (2010) 台灣地區樟樹生物量擴展係數之建立。林業研究季刊 32(3):45-54。
林俊成、劉一新、湯適謙 (2014) 闊葉樹混合林之生長表現與碳儲存量變化。林業研究季刊 36(1): 57-66。
林務局 (1997) 台灣林產處分調查用立木材積表。台灣省林務局。252頁。
林國銓、杜清澤、黃菊美(2009)台東地區相思樹與楓香兩人工林碳累積量。林業研究季刊 31(3): 55-68。
林裕仁、劉瓊霦、林俊成 (2002) 台灣地區主要用材比重與碳含量測定。台灣林業科學 17(3):291-299。
林郁庭 (2022) 都市樹木之固碳能力推估-以台北市大安森林公園為例。國立臺灣大學森林環境暨資源學系碩士論文。63頁。
邱志明、鍾智昕、唐盛林、呂明倫、王慈憶 (2012) 平地造林重要之樹種林分密度與生長特性。平地造林試驗研究監測研討會 1-19頁。
高玉芳 (2001) 尋找閱聽人—網際網路閱聽人調查方法及其相關問題之探討。國立政治大學廣播電視學系碩士論文。161頁。
莊采蓁、林政融、顏添明 (2019) 楓香人工幼齡林林分結構之量化及碳吸存能力之評估-以惠蓀林場為例。林業研究季刊 41(1):65-80。
陳忠義 (2017) 以三種方法探討平地造林樹種碳吸存。國立臺灣大學生物資源暨農學院森林環境暨資源學系博士論文,125頁。
廖宜緯、陳美光、陳羽康、鐘玉龍、吳守從 (2011) 台糖公司屏東縣平地造林碳貯存量調查。中華林學季刊 44(3):373-384。
臺北市政府 (2019) 臺北市政府民政局統計資料庫。http://pxweb.ca.gov.taipei/pxweb/Dialog/statfile9-ca.asp。
臺北市政府 (2020) 臺北市路樹資訊網,https://geopkl.gov.taipei/。(Accessed 2020.05.03)。
歐聖榮、高必嫻 (1998) 台中地區居民對路樹屬性偏好之研究。中國園藝 44(3):275-295。
蕭聖儒 (2016) 赤桉、白千層與茄苳人工林之碳吸存及植群結構。國立中興大學森林學系碩士學位論文,53頁。
羅紹麟、馮豐隆 (1986) 台灣第一次林相變更造林木生長情形及生長量調查計劃報告。林務局。89頁。
Aguaron, E., & McPherson, E. G. (2012). Comparison of Methods for Estimating Carbon Dioxide Storage by Sacramento’s Urban Forest. In R. Lal & B. Augustin (Eds.), Carbon Sequestration in Urban Ecosystems (pp. 43–71). Springer Netherlands. https://doi.org/10.1007/978-94-007-2366-5_3
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211.
Ajzen, I., & Madden, T. J. (1986). Prediction of goal directed behavior: Attitudes, intentions, and perceived behavioral control. Journal of Experimental Social Psychology, 22(5), 453–474.
Akter, S., D’Ambra, J., & Ray, P. (2011). An evaluation of PLS based complex models: The roles of power analysis, predictive relevance and GoF index.
Alberti, M., & Marzluff, J. M. (2004). Ecological resilience in urban ecosystems: linking urban patterns to human and ecological functions. Urban Ecosystems, 7, 241–265.
Altawallbeh, M., Soon, F., Thiam, W., & Alshourah, S. (2015). Mediating Role of Attitude, Subjective Norm And Perceived Behavioural Control In The Relationships Between Their Respective Salient Beliefs And Behavioural Intention To Adopt E-Learning Among Instructors In Jordanian Universities. Journal of Education and Practice, 6(11), 152–159.
Avolio, M. L., Pataki, D. E., Pincetl, S., Gillespie, T. W., Jenerette, G. D., & McCarthy, H. R. (2015). Understanding preferences for tree attributes: The relative effects of socio-economic and local environmental factors. Urban Ecosystems, 18(1), 73–86. https://doi.org/10.1007/s11252-014-0388-6
Balram, S., & Dragievi, S. (2005). Attitudes toward urban green spaces: Integrating questionnaire survey and collaborative GIS techniques to improve attitude measurements. Landscape and Urban Planning, 71(2–4), 147–162. https://doi.org/10.1016/S0169-2046(04)00052-0
Bartlett, M. S. (1951). The effect of standardization on a Chi-square approximation in factor analysis. Biometrika, 38(3), 337-344.
Baur, J. W. R., Tynon, J. F., Ries, P., & Rosenberger, R. S. (2016). Public attitudes about urban forest ecosystem services management: A case study in Oregon cities. Urban Forestry & Urban Greening, 17, 42–53. https://doi.org/10.1016/j.ufug.2016.03.012
Bernath, K., & Roschewitz, A. (2008). Recreational benefits of urban forests: Explaining visitors’ willingness to pay in the context of the theory of planned behavior. Journal of Environmental Management, 89(3), 155–166. https://doi.org/10.1016/j.jenvman.2007.01.059
Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147–155.
Brilli, L., Chiesi, M., Brogi, C., Magno, R., Arcidiaco, L., Bottai, L., Tagliaferri, G., Bindi, M., & Maselli, F. (2019). Combination of ground and remote sensing data to assess carbon stock changes in the main urban park of Florence. Urban Forestry & Urban Greening, 43, 126377. https://doi.org/10.1016/j.ufug.2019.126377
Camacho-Cervantes, M., Schondube, J. E., Castillo, A., & MacGregor-Fors, I. (2014). How do people perceive urban trees? Assessing likes and dislikes in relation to the trees of a city. Urban Ecosystems, 17(3), 761–773. https://doi.org/10.1007/s11252-014-0343-6
Chin, H. C., Choong, W. W., Alwi, S. R. W., & Mohammed, A. H. (2016). Using Theory of Planned Behaviour to explore oil palm smallholder planters’ intention to supply oil palm residues. Journal of Cleaner Production, 126, 428–439.
Chin, W. W. (1998). Issues and opinion on structural equation modeling. Management Information Systems Quarterly, 22(1), 7–16.
Chiquet, C., Dover, J. W., & Mitchell, P. (2013). Birds and the urban environment: The value of green walls. Urban Ecosystems, 16(3), 453–462.
Chuang, L.-M., Chen, P.-C., & Chen, Y.-Y. (2016). The determinant factors of employees’ behavioral intention in green building restaurants—Integration TRA and TAM. Universal Journal of Management, 4(12), 704–713. https://doi.org/10.13189/ujm.2016.041207
Coder, K. D. (1996). Trees and humankind: Cultural and psychological bindings. University of Georgia Cooperative Extension Service Forest Resources Unit.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd edition). Erlbaum.
Cohen, P., Potchter, O., & Schnell, I. (2014). The impact of an urban park on air pollution and noise levels in the Mediterranean city of Tel-Aviv, Israel. Environmental Pollution, 195, 73–83.
Coley, R. L., Kuo, F. E., & Sullivan, W. C. (1997). Where does community grow? The social context created by nature in urban public housing. Environment and Behavior, 29(4), 468–494.
Cooper, P., Poe, G. L., & Bateman, I. J. (2004). The structure of motivation for contingent values: A case study of lake water quality improvement. Ecological Economics, 50(1–2), 69–82. https://doi.org/10.1016/j.ecolecon.2004.02.009
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334.
Dale, M. J. (2014). EVALUATION OF METHODS FOR QUANTIFYING CARBON STORAGE OF URBAN TREES IN NEW ZEALAND.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. Management Information Systems Quarterly, 13(3), 319–340.
Dwyer, J. F., McPherson, E. G., Schroeder, H. W., & Rowntree, R. A. (1992). Assessing the benefits and costs of the urban forest. Journal of Arboriculture, 18(5), 227–234.
Dwyer, J. F., Nowak, D. J., & Watson, G. W. (2002). Future directions for urban forestry research in the United States. Journal of Arboriculture, 28(5), 231–236.
Dwyer, J. F., Schroeder, H. W., & Gobster, P. (1991). The significance of urban trees and forests: Toward a deeper understanding of values. Journal of Arboriculture, 17(10), 276–284.
Empidi, A., & Emang, D. (2021). Understanding public intentions to participate in protection initiatives for forested watershed areas using the Theory of Planned Behavior: A case study of Cameron Highlands in Pahang, Malaysia. Sustainability, 13(8), 4399. https://doi.org/10.3390/su13084399
Escobedo, F., & Seitz, J. (2009). The costs of managing an urban forest. FOR 217. Gainesville: University of Florida Institute of Food and Agricultural Sciences. http://edis.ifas.ufl.edu/document_fr279
Fang, J. Y., Chen, A. P., Peng, C. H., Zhao, S. Q., & Ci, L. G. (2001). Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.
Fleming, L. E. (1988). Growth estimation of street trees in central New Jersey. New Brunswick, NJ: Rutgers University. pp. 143.
Folke, C., Jansson, A., Larsson, J. & Costanza, R. (1997). Ecosystem appropriation by cities. Ambio, 26, 167–172.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50.
Frelich, L. E. (1992). Predicting dimensional relationships for Twin Cities shade trees. St. Paul, MN: University of Minnesota, Department of Forest Resources. pp. 33.
Friedrich, D. (2022). Consumer and expert behaviour towards biobased wood-polymer building products: A comparative multi-factorial study according to theory of planned behaviour. Architectural Engineering and Design Management, 18(1), 73–92. https://doi.org/10.1080/17452007.2020.1865867
Giles-Corti, B., Broomhall, M. H., Knuiman, M., Collins, C., Douglas, K., Ng, K., Lange, A., & Donovan, R. J. (2005). Increasing walking: How important is distance to, attractiveness, and size of public open space? American Journal of Preventive Medicine, 28(2), 169–176. https://doi.org/10.1016/j.amepre.2004.10.018
Goddard, M. A., Dougill, A. J., Benton, T.G. (2010). Scaling up from gardens: biodiversity conservation in urban environments. Trends in Ecology & Evolution, 25, 90–98.
Gorman, J. (2004). Residents’ opinions on the value of street trees depending on tree location. Journal of Arboriculture, 30(1), 36–44.
Graça, M., Queirós, C., Farinha-Marques, P., & Cunha, M. (2018). Street trees as cultural elements in the city: Understanding how perception affects ecosystem services management in Porto, Portugal. Urban Forestry & Urban Greening, 30, 194–205. https://doi.org/10.1016/j.ufug.2018.02.001
Grande-Ortiz, M. A., Ayuga-Téllez, E., & Contato-Carol, M. L. (2012). Methods of tree appraisal: a review of their features and application possibilities. Arboriculture & Urban Forestry, 38(4), 130-140.
Greaves, M., Zibarras, L. D., & Stride, C. (2013). Using the Theory of Planned Behavior to explore environmental behavioral intentions in the workplace. Journal of Environmental Psychology, 34, 109–120.
Gregg, J. W., Jones, C. G., Dawson, T. E. (2003). Urbanization effects on tree growth in the vicinity of New York City. Nature, 424, 183–187.
Gundersen, V. S., & Frivold, L. H. (2008). Public preferences for forest structures: are view of quantitative surveys from Finland, Norway and Sweden. Urban Forestry & Urban Greening, 7(4), 241-258.
Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd ed.). Sage.
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. The Journal of Marketing Theory and Practice, 19(2), 139–152.
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2012). Partial Least Squares: The Better Approach to Structural Equation Modeling? Long Range Planning, 45(5–6), 312–319.
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013). Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Planning, 46(1–2), 1–12.
Hildebrandt, R., & Iost, A. (2012). From points to numbers: a database-driven approach to convert terrestrial LiDAR point clouds to tree volumes. European Journal of Forest Research, 131(6), 1857-1867.
Hirabayashi, S. (2012). i-Tree Eco Precipitation Interception Model Descriptions. http://www.itreetools.org/eco/resources/iTree_Eco_Precipitation_Interception_Model_Descriptions_V1_2.pdf
Hirabayashi, S. (2013). i-Tree Eco precipitation interception model descriptions. Washington, DC: U.S. Department of Agriculture, Forest Service; Kent, OH: Davey Tree Expert Co.; and other cooperators. pp. 21 https://www.itreetools.org/eco/resources/iTree_Eco_Precipitation_ Interception_Model_Descriptions.pdf
Hirabayashi, S. (2015). i-Tree Eco United States county-based hydrologic estimates. Washington, DC: U.S. Department of Agriculture, Forest Service; Kent, OH: Davey Tree Expert Co.; and other cooperators. http://www.itreetools.org/landscape/resources/Eco_US_county-based_hydrologic_estimates.pdf
Hladnik, D., & Pirnat, J. (2011). Urban forestry-Linking naturalness and amenity: The case of ljubljana, Slovenia. Urban Forestry & Urban Greening, 10(2), 105–112.
Hull, R. B. (1992). How The Public Values Urban Forests. Arboriculture & Urban Forestry, 18(2), 98–101. https://doi.org/10.48044/jauf.1992.023
Hulland, J. (1999). Use of partial least squares in strategic management research: A review of four recent studies. Strategic Management Journal, 20(2), 195–204.
Ignacio, J. J., Malenab, R. A., Pausta, C. M., Beltran, A., Belo, L., Tanhueco, R. M., Promentilla, M. A., & Orbecido, A. (2019). A perception study of an integrated water system project in a water scarce community in the Philippines. Water, 11(8), 1593. https://doi.org/10.3390/w11081593
IPCC (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston, H.S., Buendia, L., Miwa K., Ngara, T., and Tanabe, K.(eds). Published: IGES, Japan.
Jahangir, N., & Begum, N. (2008). The role of perceived usefulness, perceived ease of use, security and privacy, and customer attitude to engender customer adaptation in the context of electronic banking. African Journal of Business Management, 2(1), 32–40.
Jeong, N.-R., Han, S.-W., & Ko, B. (2023). Understanding Urban Residents’ Perceptions of Street Trees to Develop Sustainable Maintenance Guidelines in the Seoul Metropolitan Area, Korea. Forests, 14(4), 837. https://doi.org/10.3390/f14040837
Jim, C. Y., & Chen, W. Y. (2006a). Impacts of urban environmental elements on residential housing prices in Guangzhou (China). Landscape and Urban Planning, 78(4), 422–434.
Jim, C. Y., & Chen, W. Y. (2006b). Perception and attitude of residents toward urban green spaces in Guangzhou (China). Environmental Management, 38(3), 338–349. https://doi.org/10.1007/s00267-005-0166-6
Jim, C. Y., & Chen, W. Y. (2008). Assessing the ecosystem service of air pollutant removal by urban trees in Guangzhou (China). Journal of Environmental Management, 88(4), 665–676.
Jöreskog, K. G., & Sörbom, D. (1989). LISREL 7: A guide to the program and applications. SPSS.
Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39, 31–36.
Keeling, H. C., & Phillips, O. L. (2007). The global relationship between forest productivity and biomass. Global Ecology and Biogeography, 16(5), 618-631.
Kramer, P. J. & Kozlowski, T. T. (1979). Physiology of Plants. Academic Press, San Diego CA. pp. 495.
Lam, K.-C., Ng, S.-L., Hui, W.-C., & Chan, P.-K. (2005). Environmental quality of urban parks and open spaces in Hong Kong. Environmental Monitoring and Assessment, 111(1–3), 55–73.
Lefsky, M., & McHale, M. (2008). Volume estimates of trees with complex architecture from terrestrial laser scanning. Journal of Applied Remote Sensing, 2, 1-19.
Lewis, E. B. (1982) Control of body segment differentiation in drosophila by the bithorax gene complex. Embryonic development, Part A: Genetic Aspects. pp. 269-288.
Limayem, M., & Cheung, C. M. (2011). Predicting the continued use of Internet-based learning technologies: The role of habit. Behaviour & Information Technology, 30(1), 91–99.
Lin, I. H., Wu, C., & De Sousa, C. (2013). Examining the economic impact of park facilities on neighboring residential property values. Applied Geography, 45, 322–331.
Lo, A. Y., & Jim, C. (2010). Willingness of residents to pay and motives for conservation of urban green spaces In the compact city of Hong Kong. Urban Forestry & Urban Greening, 9(2), 113–120.
Lo, A. Y., & Jim, C. (2012). Citizen attitude and expectation towards greenspace provision in compact urban milieu. Land Use Policy, 29(3), 577–586.
Lo, A. Y., Byrne, J. A., & Jim, C. Y. (2017). How climate change perception is reshaping attitudes towards the functional benefits of urban trees and green space: Lessons from Hong Kong. Urban Forestry & Urban Greening, 23, 74–83. https://doi.org/10.1016/j.ufug.2017.03.007
Lohr, V., Pearson-Mims, C., Tarnai, J., & Dillman, D. (2004). How Urban Residents Rate and Rank the Benefits and Problems Associated with Trees in Cities. Arboriculture & Urban Forestry, 30(1), 28–35. https://doi.org/10.48044/jauf.2004.004
López-Mosquera, N., García, T., & Barrena, R. (2014). An extension of the Theory of Planned Behavior to predict willingness to pay for the conservation of an urban park. Journal of Environmental Management, 135, 91–99. https://doi.org/10.1016/j.jenvman.2014.01.019
Lyytimäki, J., Sipilä, M. (2009). Hopping on one leg—the challenge of ecosystem disservices for urban green management. Urban Forestry & Urban Greening, 8, 309–315.
Madureira, H., Nunes, F., Oliveira, J. V., Cormier, L., & Madureira, T. (2015). Urban residents’ beliefs concerning green space benefits in four cities in France and Portugal. Urban Forestry & Urban Greening, 14(1), 56–64.
Maichum, K., Parichatnon, S., & Peng, K.-C. (2016). Application of the Extended Theory of Planned Behavior Model to Investigate Purchase Intention of Green Products among Thai Consumers. 20.
McHale, M. R., Burke, I. C., Lefsky, M. A., Peper, P. J., & McPherson, E. G. (2009). Urban forest biomass estimates: Is it important to use allometric relationships developed specifically for urban trees? Urban Ecosystems, 12(1), 95–113. https://doi.org/10.1007/s11252-009-0081-3
McPherson, E. G., van Doorn, N. S., & Peper, P. J. (2016). Urban Tree Database and Allometric Equations. Gen. Tech. Rep. PSW-GTR-235. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. pp. 86.
McPherson, E. G., & Simpson, J. R. (1999). Carbon dioxide reductions through urban forestry: guidelines for professional and volunteer tree planters. PSW GTR-171. USDA Forest Service, Pacific Southwest Research Station, Center for Urban Forest Research, Albany, CA. pp. 237.
Miller, R.W., & Sylvester, W.A. (1981). An economic evaluation of the pruning cycle. Journal of Arboriculture, 7(4):109–112.
Myeong, S., Nowak, D. J., & Duggin, M. J. (2006). A temporal analysis of urban forest carbon storage using remote sensing. Remote Sensing of Environment, 101(2), 277–282. https://doi.org/10.1016/j.rse.2005.12.001
Nesbitt, L., Hotte, N., Barron, S., Cowan, J., & Sheppard, S. R. (2017). The social and economic value of cultural ecosystem services provided by urban forests in North America: A review and suggestions for future research. Urban Forestry & Urban Greening, 25, 103–111.
Neuman, W. L. (2013). Social research methods: Qualitative and quantitative approaches. Pearson Education Ltd.
Nowak, D. J. (1994). Atmospheric carbon dioxide reduction by Chicago’s urban forest. In: McPherson, E. G., D. J. Nowak and R. A. Rowntree, Editors, Chicago's urban forest ecosystem: results of the Chicago Urban Forest Climate Project. Gen. Tech. Rep. NE-186. Radnor, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. pp. 83-94.
Nowak, D. J. (2021). Understanding i-Tree: 2021 Summary of programs and methods (NRS-GTR-200-2021; p. NRS-GTR-200-2021). U.S. Department of Agriculture, Forest Service, Northern Research Station. https://doi.org/10.2737/NRS-GTR-200-2021
Nowak, D. J., & Crane, D. E. (2002). Carbon storage and sequestration by urban trees in the USA. Environmental Pollution, 116(3), 381–389. https://doi.org/10.1016/S0269-7491(01)00214-7
Nowak, D. J., & Dwyer, J. F. (2007). Understanding the Benefits and Costs of Urban Forest Ecosystems. In Urban and Community Forestry in the Northeast (2nd ed, pp. 25–46).
Nowak, D. J., Greenfield, E. J., Hoehn, R. E., & Lapoint, E. (2013). Carbon storage and sequestration by trees in urban and community areas of the United States. Environmental Pollution, 178, 229–236. https://doi.org/10.1016/j.envpol.2013.03.019
Nowak, D. J., Hirabayashi, S., Bodine, A., & Greenfield, E. (2014). Tree and forest effects on air quality and human health in the United States. Environmental Pollution, 193, 119–129. https://doi.org/10.1016/j.envpol.2014.05.028
Nowak, D. J., Hirabayashi, S., Doyle, M., McGovern, M., & Pasher, J. (2018). Air pollution removal by urban forests in Canada and its effect on air quality and human health. Urban Forestry & Urban Greening, 29, 40–48. https://doi.org/10.1016/j.ufug.2017.10.019
Nowak, D. J., & Dwyer, J. F. (2000). Understanding the benefits and costs of urban forest ecosystems. Handbook of urban and community forestry in the northeast. New York, NY: Kluwer Academics/Plenum: 11-22.
Nowak, D. J., Greenfield, E.J., Hoehn, R. E., & Lapoint, E. (2013) Carbon storage and sequestration by trees in urban and community areas of the United States. Environmental Pollution, 178, 229-236.
Olivero-Lora, S., Meléndez-Ackerman, E., Santiago, L., Santiago-Bartolomei, R., & García-Montiel, D. (2020). Attitudes toward Residential Trees and Awareness of Tree Services and Disservices in a Tropical City. Sustainability, 12(1), 117. https://doi.org/10.3390/su12010117
Ostoić, S. K., van den Bosch, C. C. K., Vuletić, D., Stevanov, M., Živojinović, L., Mutabdžija-Bećirović, S., Lazarević, J., Stojanova, B., Blagojević, D., Stojanovska, M., Nevenić, R., & Malovrh, S. P. (2017). Citizens’ perception of and satisfaction with urban forests and green space: Results from selected Southeast European cities. Urban Forestry & Urban Greening, 23, 93–103.
Oxford City Council (2021). Oxford i-Tree Eco Report 2021. https://www.oxford.gov.uk/downloads/file/860/oxford-i-tree-eco-study
Pacione, M. (2009). Urban Geography: A Global Perspective. London: Routledge.
Park, J. H., Baek, S. G., Kwon, M. Y., Je, S. M., & Woo, S. Y. (2018). Volumetric equation development and carbon storage estimation of urban forest in Daejeon, Korea. Forest Science and Technology, 14(2), 97–104. https://doi.org/10.1080/21580103.2018.1452799
Pataki, D. E., Alig, R. J., Fung, A. S., Golubiewski, N. E., Kennedy, C. A., Mcpherson, E. G., Nowak, D. J., Pouyat, R. V., & Romero Lankao, P. (2006). Urban ecosystems and the North American carbon cycle. Global Change Biology, 12(11), 2092–2102. https://doi.org/10.1111/j.1365-2486.2006.01242.x
Pillsbury, N. H., Reimer, J. L., & Thompson, R. P. (1998). Tree Volume Equations for Fifteen Urban Species in California, Technical Report No. 7. Urban Forest Ecosystems Institute, California Polytechnic State University, San Luis Obispo. pp. 64.
Ponce-Donoso, M., Vallejos-Barra, O., & Escobedo, F. J. (2017). Appraisal of urban trees using twelve valuation formulas and two appraiser groups. Arboriculture & Urban Forestry, 43(2), 72–82.
Pommerening, A., & Muszta, A. (2015). Methods of modelling relative growth rate. Forest Ecosystem, 2,5. https://doi.org/10.1186/s40663-015-0029-4
Rhoades R. W., & Stipes, R. J. (1999). Growth of trees on Virginia Tech campus in response to various factors. Journal of Arboriculture, 25(4), 211-217.
Ringle, C. M., Wende, S., & Becker, J.-M. (2015). SmartPLS 3. SmartPLS GmbH. http://www.smartpls.com
Rogers, K., Sacre, K., Goodenough, J., & Doick, K. J. (2015). Valuing London’s urban forest: Results of the London i-Tree Eco Project. Treeconomics.
Roy, S., Byrne, J., & Pickering, C. (2012). A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban Forestry & Urban Greening, 11(4), 351–363. https://doi.org/10.1016/j.ufug.2012.06.006
Russo, A., Escobedo, F. J., Timilsina, N., Schmitt, A. O., Varela, S., & Zerbe, S. (2014). Assessing urban tree carbon storage and sequestration in Bolzano, Italy. International Journal of Biodiversity Science, Ecosystem Services & Management, 10(1), 54–70. https://doi.org/10.1080/21513732.2013.873822
Salbitano, F., Borelli, S., Conigliaro, M., & Chen, Y. (2016). Guidelines on urban and peri‐urban forestry. FAO Forestry Paper, pp. 178.
Sanders, R. A. (1984). Some determinants of urban forest structure. Urban Ecology, 8(1-2), 13-27.
Sarstedt, M., Ringle, C. M., & Hair, J. F. (2017). Partial Least Squares Structural Equation Modeling. In C. Homburg, M. Klarmann, & A. Vomberg (Eds.), Handbook of Market Research (pp. 1–40). Springer International Publishing. https://doi.org/10.1007/978-3-319-05542-8_15-1
Schroeder, H., Flannigan, J., & Coles, R. (2006). Residents’ attitudes toward street trees in the UK and U.S. Communities. Arboriculture & Urban Forestry, 32(5), 236–246.
Schumacher, H. (1933). Logarithmic Expression of Timber-tree Volume. Journal of Agricultural Research, 47, 719-734.
Seburanga, J. L., Kaplin, B. A., Zhang, Q.-X., & Gatesirea, T. (2014). Amenity trees and green space structure in urban settlements of Kigali, Rwanda. 13(1), 84–93.
Seed Consulting Services (2016). Tree Ecosystem Services Assessment, Ridge Park. A report prepared for the City of Unley, South Australia.
Soares, A. L., Rego, F. C., McPherson, E. G., Simpson, J. R., Peper, P. J., & Xiao, Q. (2011). Benefits and costs of street trees in Lisbon, Portugal. Urban Forestry & Urban Greening, 10(2), 69-78.
Sommer, R., Learey, F., Summit, J., & Tirrell, M. (1994). The social benefits of resident involvement in tree planting. Journal of arboriculture, 20, 170–175.
Song, X. P., Tan, P. Y., Edwards, P., & Richards, D. (2018). The economic benefits and costs of trees in urban forest stewardship: A systematic review. Urban Forestry & Urban Greening, 29, 162–170. https://doi.org/10.1016/j.ufug.2017.11.017
Steenberg, J. W. N., Ristow, M., Duinker, P. N., Lapointe-Elmrabti, L., MacDonald, J. D., Nowak, D. J., Pasher, J., Flemming, C., & Samson, C. (2023). A national assessment of urban forest carbon storage and sequestration in Canada. Carbon Balance and Management, 18(1), 11. https://doi.org/10.1186/s13021-023-00230-4
Tan, Z., Lau, K. K.-L., & Ng, E. (2016). Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy and Buildings, 114, 265–274.
Tanhuanpää, T., Kankare, V., Setälä, H., Yli-Pelkonen, V., Vastaranta, M., Niemi, M. T., Raisio, J., & Holopainen, M. (2017). Assessing above-ground biomass of open-grown urban trees: A comparison between existing models and a volume-based approach. Urban Forestry & Urban Greening, 21, 239–246. https://doi.org/10.1016/j.ufug.2016.12.011
Thompson, D. W., & Hansen, E. N. (2013). Carbon Storage on Non-industrial Private Forestland: An Application of the Theory of Planned Behavior. 27.
Thompson, S. K. (2002). Sampling. Wiley, New York. pp. 367.
Tu, G., Abildtrup, J., & Garcia, S. (2016). Preferences for urban green spaces and peri-urban forests: An analysis of stated residential choices. Landscape and Urban Planning, 148, 120–131.
Vonderach, C., Vogtle, T., Adler, P. & Norra, S. (2012). Terrestrial laser scanning for estimating urban tree volume and carbon content. International Journal of Remote Sensing, 33(21), 6652-6667.
Wan, C., & Shen, G. Q. (2015). Encouraging the use of urban green space: The mediating role of attitude, perceived usefulness and perceived behavioural control. Habitat International, 50, 130–139. https://doi.org/10.1016/j.habitatint.2015.08.010
Wan, C., Shen, G. Q., & Choi, S. (2018). The moderating effect of subjective norm in predicting intention to use urban green spaces: A study of Hong Kong. Sustainable Cities and Society, 37, 288–297. https://doi.org/10.1016/j.scs.2017.11.022
Wang, Y.-C., Lin, M.-Y., Ko, S.-H., & Lin, J.-C. (2013). Carbon Storage Benefit by Trees of Air Quality Purification Zones in Taiwan’s Five Municipalities. Taiwan Journal of Forest Science, 28(4), 159–169. https://doi.org/10.7075/TJFS.201312_28(4).0001
WHO (2016). Urban green spaces and health. Copenhagen: WHO Regional Office for Europe.
Wicker, A. (1969). Attitudes versus actions: The relationship of verbal and overt behavioural responses to attitude objects. Journal of Social Issues, 25(4), 41–78.
Wu, B., Yu, B., Yue, W., Shu, S., Tan, W., Hu, C., Huang, Y., Wu, J., & Liu, H. (2013). A voxel-based method for automated identification and morphological parameters estimation of individual street trees from mobile laser scanning data. Remote Sensing, 5(2), 584-611.
Yen, Y., Wang, Z., Shi, Y., Xu, F., Soeung, B., Sohail, M. T., Rubakula, G., & Juma, S. A. (2017). The predictors of the behavioral intention to the use of urban green spaces: The perspectives of young residents in Phnom Penh, Cambodia. Habitat International, 64, 98–108. https://doi.org/10.1016/j.habitatint.2017.04.009
Yeshitela, K. (2020). Attitude and Perception of Residents towards the Benefits, Challenges and Quality of Neighborhood Parks in a Sub-Saharan Africa City. Land, 9(11), 450. https://doi.org/10.3390/land9110450
Yoon, T. K., Park, C.W., Lee, S. J., Ko, S., Kim, K. N., Son, Y., Lee, K. H., Oh, S., Lee, W.-K. & Son, Y. (2013). Allometric equations for estimating the aboveground volume of five common urban street tree species in Daegu, Korea. Urban Forestry & Urban Greening, 12(3), 344-349.
Zhang Y., Hussain, A., Deng, J., & Letson, N. (2007). Public attitudes toward urban trees and supporting urban tree programs. Environment and Behavior, 39(6), 797-814. https://doi.org/10.1177/0013916506292326
Zhang, L., Fan, Y., Zhang, W., & Zhang, S. (2019). Extending the Theory of Planned Behavior to Explain the Effects of Cognitive Factors across Different Kinds of Green Products. Sustainability, 11(15), 4222. https://doi.org/10.3390/su11154222
Zhao, Z., Zhang, Y., & Wen, Y. (2018). Residents’ Support Intentions and Behaviors Regarding Urban Trees Programs: A Structural Equation Modeling-Multi Group Analysis. 11.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92929-
dc.description.abstract都市中的樹木為重要的綠色資源,可以帶來多樣的生態系服務效益提升都市的環境品質,為了維持效益的提供並改善可能產生的問題。都市樹木需要進行妥善的管理維護,而了解居民對於都市樹木之效益與問題的感受,以及如何提升居民支持及參與保護都市樹木,是都市樹木管理之重要參考資訊,此外,透過準確量化評估都市樹木之生態系服務效益,亦可提供科學化之管理依據,然而國內相關研究仍付之闕如。因此本研究以臺北市為案例,首先透過問卷調查發現居民最重視都市樹木帶來之「碳吸存」效益,而對都市樹木產生的問題除「病蟲害問題」外均認為不嚴重;而根據延伸計畫行為理論模型(Extend TPB)結果,居民對都市樹木之「知覺有用性(PU)」與「知覺樹木效益(PTB)」之認知,會正向影響保護都市樹木之「態度(ATT)」與「行為意向(BI)」,因此未來可透過教育與推廣樹木之有用性以及生態系服務效益,提升居民對保護都市樹木的態度,以及支持與參與保護都市樹木的行為意向。此外,本研究針對居民較重視之「碳儲存及吸存」及「空氣污染移除」效益,應用i-Tree Eco完成量化計算,結果顯示臺北市碳儲存量最高之前三名樹種為榕樹(Ficus macrocarpa)、白千層(Melaleuca leucadendra)與樟樹(Cinnamomum camphora),碳吸存量最高的樹種則為榕樹、樟樹以及茄苳(Bischofia javanica),空氣汙染移除量最高之前三名樹種為榕樹、樟樹及白千層,各項效益量化結果可作為不同區域與管理措施效果參考。最後,為瞭解i-Tree Eco是否適用於臺北市樹木效益量化分析,本研究建立茄苳、樟樹與楓香(Liquidambar formosana)之材積式與胸徑生長率式,完成碳儲存及吸存量本土化評估,結果發現以i-Tree Eco估算臺北市樹木之碳儲存及吸存量有高估的可能,建議i-Tree Eco之分析結果僅作為相對比較使用,為準確估算碳儲存及吸存量應建立各都市樹種之本土化模式。zh_TW
dc.description.abstractUrban trees are significant green resources that enhance the environmental quality of cities and provide diverse benefits to residents. To maintain these benefits and address potential problems, urban trees require proper management and maintenance. Understanding residents' perceptions of the benefits and problems associated with urban trees, as well as how to increase their support and participation in urban tree protection, is crucial for urban tree management. Furthermore, accurately quantifying the ecosystem services provided by urban trees can offer scientific references for management. However, related research in Taiwan is still lacking. Thus, this study takes Taipei City as a case study. Through a questionnaire survey, it was found that residents prioritize the "carbon sequestration" benefits of urban trees and do not perceive most of the problems caused by urban trees, except for "pest and disease issues". Based on the Extended Theory of Planned Behavior (Extend TPB) model, residents' perceptions of the "perceived usefulness (PU)" and "perceived tree benefits (PTB)" of urban trees positively influence their "attitude (ATT)" and "behavioral intention (BI)" towards protecting urban trees. Therefore, future efforts could focus on education and promotion of the usefulness and ecosystem service benefits of trees to enhance residents' attitudes and behavioral intentions towards supporting and participating in urban tree protection. Additionally, this study applied the i-Tree Eco to quantify the benefits that residents value most, such as "carbon storage and sequestration" and "air pollution removal." The results indicate that the top three tree species in Taipei City for carbon storage are Ficus macrocarpa, Melaleuca leucadendra, and Cinnamomum camphora, while the top species for carbon sequestration are Ficus macrocarpa, Cinnamomum camphora, and Bischofia javanica. For air pollution removal, the top three species are Ficus macrocarpa, Cinnamomum camphora, and Melaleuca leucadendra. These quantified benefits can serve as references for different regions and management measures. Finally, to assess the applicability of i-Tree Eco for quantifying tree benefits in Taipei City, this study established volume equations and DBH relative growth rate equations for Bischofia javanica, Cinnamomum camphora, and Liquidambar formosana, completing a localized evaluation of carbon storage and sequestration. The results suggest that i-Tree Eco may overestimate the carbon storage and sequestration of trees in Taipei City. Therefore, it is recommended that the results from i-Tree Eco be used only for relative comparisons, and that localized models for various urban tree species be established for accurate carbon storage and sequestration estimates.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-08T16:06:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-08T16:06:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審訂書 i
摘要 ii
Abstract iii
第一章 前言 1
1.1 研究動機與背景 1
1.2 研究目的 4
第二章 文獻回顧 6
2.1 居民對都市樹木認知 6
2.1.1 都市樹木的效益與問題 6
2.1.2 居民對樹木效益與問題看法 6
2.1.3 保護樹木行為意向 8
2.2 都市樹木生態系服務效益量化評估 10
2.2.1 i-Tree Eco評估流程 10
2.2.2 應用i-Tree評估案例 13
2.3 都市樹木碳儲存及吸存效益 15
2.3.1 樹木碳儲存及吸存量評估方法 15
2.3.2 都市樹木碳儲存及吸存計算相關研究 17
第三章 研究方法 19
3.1 都市樹木認知與保護行為意向調查 20
3.1.1 研究理論模型架構與假設 20
3.1.2 問卷設計 25
3.1.3 調查對象與方法 27
3.1.4 資料分析 27
3.2 都市樹木生態系服務效益量化評估 30
3.2.1 分析資料 30
3.2.2 分析方法 31
3.3 都市樹木碳儲存及吸存效益本土化評估 33
3.3.1 調查抽樣方法 33
3.3.2 材積調查 34
3.3.3 胸徑生長量調查 37
3.3.4 碳儲存及吸存量計算 38
第四章 結果與討論 40
4.1 都市樹木認知與保護行為意向調查 40
4.1.1 受訪者基本資料 41
4.1.2 接觸都市樹木之特性 42
4.1.3 臺北市居民都市樹木效益與問題認知 44
4.1.4 保護都市樹木行為意向 52
4.2 都市樹木生態系服務效益量化評估 59
4.2.1 碳儲存及吸存 59
4.2.2 空氣汙染移除 61
4.2.3 i-Tree Eco於臺灣應用之限制 62
4.3 都市樹木碳儲存及吸存效益本土化評估 63
4.3.1 材積調查 63
4.3.2 胸徑生長量調查 70
4.3.3 碳儲存及吸存計算 73
第五章 結論與建議 78
5.1 結論 78
5.2 研究限制 79
5.3 未來研究建議 80
參考文獻 81
附錄 100
-
dc.language.isozh_TW-
dc.subject都市樹木zh_TW
dc.subject生態系服務zh_TW
dc.subject行為意向zh_TW
dc.subjecti-Tree Ecozh_TW
dc.subject材積式zh_TW
dc.subject碳儲存zh_TW
dc.subject碳吸存zh_TW
dc.subjectecosystem servicesen
dc.subjectcarbon sequestrationen
dc.subjectcarbon storageen
dc.subjecti-Tree Ecoen
dc.subjectvolume equationsen
dc.subjectbehavioral intentionen
dc.subjecturban treesen
dc.title臺北市都市樹木重要效益評估之研究zh_TW
dc.titleStudy on the Important Urban Tree Benefits of Taipei Cityen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee葉欣誠;王兆桓;林俊成;林裕仁zh_TW
dc.contributor.oralexamcommitteeShin-Cheng Yeh;Chao-huan Wang;Jiunn-Cheng Lin;Yu-Jen Linen
dc.subject.keyword都市樹木,生態系服務,行為意向,i-Tree Eco,材積式,碳儲存,碳吸存,zh_TW
dc.subject.keywordurban trees,ecosystem services,behavioral intention,volume equations,i-Tree Eco,carbon storage,carbon sequestration,en
dc.relation.page103-
dc.identifier.doi10.6342/NTU202401467-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-04-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf2.07 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved