Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92928
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅楸善zh_TW
dc.contributor.advisorChiou-Shann Fuhen
dc.contributor.author郁霈靖zh_TW
dc.contributor.authorPei-Jing Yuen
dc.date.accessioned2024-07-05T16:09:11Z-
dc.date.available2024-07-06-
dc.date.copyright2024-07-05-
dc.date.issued2024-
dc.date.submitted2024-06-26-
dc.identifier.citation[Graves 2006] A. Graves et al. "Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks," Proceedings of International Conference on Machine Learning, Pittsburgh, Pennsylvania, pp. 369-376, 2006.
[Hannun 2017] Hannun, A, "Sequence Modeling with CTC," Distill 2.11: e8, 2017.
[Intel 2024] Intel, "Intel Distribution of OpenVINO Toolkit," https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html, 2024.
[He 2016] K. He, et al. "Deep Residual Learning for Image Recognition," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, pp. 770-778, 2016.
[Huang 2020] C. H. Huang, "Vehicle License Plate Recognition with Deep Learning," Master Thesis, Graduate Institute of Networking and Multimedia, National Taiwan University, 2020.
[Jaderberg 2015] M. Jaderberg et al. "Spatial Transformer Networks," Proceedings of Workshop on Advances in Neural Information Processing Systems 28, Annual Conference on Neural Information Processing Systems, Montreal, Quebec, Canada, pp. 1-9, 2015.
[Jocher 2023] G. Jocher, A. Chaurasia, and J. Qiu, "YOLO by Ultralytics," https://github.com/ultralytics/ultralytics, 2023.
[Li 2020] X. Li, et al. "Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection," Proceedings of Workshop on Advances in Neural Information Processing Systems 33, Annual Conference on Neural Information Processing Systems, Virtual, pp. 21002-21012, 2020.
[Lin 2017] T. Y. Lin et al. "Focal Loss for Dense Object Detection," Proceedings of the IEEE International Conference on Computer Vision, Honolulu, HI, pp. 2980-2988, 2017.
[Liu 2023] S. Liu, et al. "A Single-Stage Automatic License Plate Recognition Network with Balanced-IoU Loss," Journal of Physics: Conference Series, Vol. 2504. No. 1, pp. 1-11, 2023.
[Redmon 2016] J. Redmon et al. "You Only Look Once: Unified, Real-Time Object Detection," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, pp. 779-788, 2016.
[Silva 2018] S. M. Silva, and C. R. Jung, "License Plate Detection and Recognition in Unconstrained Scenarios," Proceedings of the European Conference on Computer Vision, Munich, Germany, pp. 580-596, 2018.
[Simonyan 2014] K. Simonyan and Z. Andrew, "Very Deep Convolutional Networks for Large-Scale Image Recognition," arXiv:1409.1556, 2014.
[Szegedy 2015] C. Szegedy et al. "Going Deeper with Convolutions." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, pp. 1-9, 2015.
[Takida 2023] Y. Takida et al. "SAN: Inducing Metrizability of GAN with Discriminative Normalized Linear Layer," arXiv:2301.12811, 2023.
[Terven 2023] J. Terven and D. Cordova-Esparza, "A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS," arXiv:2304.00501, 2023.
[Wang 2021] Y. Wang et al. "Rethinking and Designing a High-Performing Automatic License Plate Recognition Approach," IEEE Transactions on Intelligent Transportation Systems, Vol. 23, No. 7, pp. 8868-8880. 2021.
[Wang 2024] C. Y. Wang et al. "YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information," arXiv:2402.13616, 2024.
[Xu 2018] Z. B. Xu, et al. "Towards End-to-End License Plate Detection and Recognition: A Large Dataset and Baseline," Proceedings of the European Conference on Computer Vision, Munich, Germany, pp. 255-271, 2018.
[Zheng 2020] Z. H. Zheng et al. "Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression," Proceedings of the AAAI Conference on Artificial Intelligence, New York, Vol. 34. No. 07, pp. 12993-13000, 2020.
[Zherzdev 2018] S. Zherzdev and A. Gruzdev, "LPRNet: License Plate Recognition via Deep Neural Networks," arXiv:1806.10447, 2018.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92928-
dc.description.abstract本篇論文提出了一個專為移動車輛設計的車牌辨識 (License Plate Recogniotion) 系統解決方案,旨在實現在車輛行駛期間實時進行車牌辨識。該系統整合了工業電腦、紅外攝影機和電源供應器,即將開發一套名為「AI (Artificial Intelligence) 人工智慧機車路邊停車計費系統」。本論文通過改進的深度學習網絡架構進行車牌辨識,以應對車輛行駛過程中拍攝到的不同角度、光線、移動模糊等因素,從而提高辨識準確性。為了兼顧計算資源有限和電力消耗的考慮,本論文選擇了較輕量的網絡架構。該系統的辨識過程分為兩個階段:首先,通過一個卷積神經網絡 (Convolutional Neural Network,CNN) 架構對街道場景進行車牌偵測,然後使用另一個卷積神經網絡對偵測到的車牌影像進行光學字元辨識,包括大寫字母(A-Z)和數字(0-9)。該方法在白天以 20 公里/小時高速行駛的影片測試實現了95.8%的準確率、97.1%的召回率及96.45%的 F1-score,並在 10 公里/小時的實際行駛實驗中達到了98.06%的準確率。zh_TW
dc.description.abstractThis thesis proposes a solution for real-time License Plate Recognition (LPR) on moving vehicles. Our future system, named the "AI Motorcycle Parking Fee Collection System," integrates Industrial Personal Computers (IPC), infrared cameras, and power supplies. YuLPR employs an advanced deep learning network architecture to address challenges such as varying angles, lighting conditions, and motion blur encountered during vehicle movement, thereby enhancing recognition accuracy. To balance computational efficiency and power consumption, a lightweight network architecture is adopted. The recognition process involves two stages: initial license plate detection using a Convolutional Neural Network (CNN) on street scenes, followed by Optical Character Recognition (OCR) using another CNN on the detected license plate images, encompassing uppercase letters (A-Z) and digits (0-9). YuLPR achieves a precision of 95.8%, a recall of 97.1%, and a F1-score of 96.45% in video tests conducted at a high speed of 20 kilometers per hour (km/h) during daytime, and reaches an accuracy of 98.06% in actual riding experiments conducted at a speed of 10 km/h.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-05T16:09:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-05T16:09:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 Overview 1
1.2 License Plates in Natural Scene 5
1.3 Thesis Organization 10
Chapter 2 Related Works 11
Chapter 3 Background 14
3.1 YOLOv8 14
3.1.1 Overview 14
3.1.2 Backbone 17
3.1.3 Neck 19
3.1.4 Head 20
3.2 Spatial Transformer Networks (STN) 21
3.3 LPRNet: License Plate Recognition via Deep Neural Networks 24
3.3.1 Overview 24
3.3.2 Connectionist Temporal Classification (CTC) 26
3.3.3 CTC Loss Function 28
3.4 OpenVINO: Open Visual Inference and Neural Network Optimization 29
Chapter 4 Methodology 32
4.1 Overview 32
4.2 License Plate Detection 33
4.3 License Plate Recognition 36
4.3.1 Spatial Transformer Networks 36
4.3.2 LPRNet: License Plate Recognition via Deep Neural Networks 37
4.3.3 Focal CTC Loss Function 39
4.4 Data Augmentation 42
Chapter 5 Experimental Results 46
5.1 Overview 46
5.2 Datasets 47
5.2.1 Scene Dataset 47
5.2.2 License Plate Dataset 48
5.3 Performance Evaluation Methods 50
5.4 Results 52
5.4.1 Training Phase 52
5.4.2 Testing Phase 55
5.4.3 Ablation Study 65
5.4.4 Experiments in Real-World Environments 66
Chapter 6 Conclusion and Future Works 79
References 81
-
dc.language.isoen-
dc.title郁車牌: 行車中的自動車牌辨識zh_TW
dc.titleYuLPR: Automated License Plate Recognition in Motionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee方瓊瑤;劉木議zh_TW
dc.contributor.oralexamcommitteeChiung-Yao Fang;Mu-Yi Liouen
dc.subject.keyword車牌辨識,深度學習,電腦視覺,人工智慧,卷積神經網路,zh_TW
dc.subject.keywordLicense Plate Recognition,Deep Learning,Computer Vision,Artificial Intelligence,Convolutional Neural Network,en
dc.relation.page84-
dc.identifier.doi10.6342/NTU202401135-
dc.rights.note未授權-
dc.date.accepted2024-06-26-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
4.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved