Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 天文物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92926
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂聖元zh_TW
dc.contributor.advisorSheng-Yuan Liuen
dc.contributor.author陳韋安zh_TW
dc.contributor.authorWei-An Chenen
dc.date.accessioned2024-07-05T16:08:30Z-
dc.date.available2024-07-06-
dc.date.copyright2024-07-05-
dc.date.issued2024-
dc.date.submitted2024-06-28-
dc.identifier.citationAbe, D., Inoue, T., Inutsuka, S.-i., & Matsumoto, T. 2021, ApJ, 916, 83, doi: 10.3847/1538-4357/ac07a1
Alfaro, E. J., & Román-Zúñiga, C. G. 2018, MNRAS, 478, L110, doi: 10.1093/mnrasl/sly075
Allison, R. J., Goodwin, S. P., Parker, R. J., et al. 2009, MNRAS, 395, 1449, doi: 10.1111/j.1365-2966.2009.14508.x
André, P., Di Francesco, J., Ward-Thompson, D., et al. 2014, in Protostars and Planets VI, ed. H. Beuther, R. S. Klessen, C. P. Dullemond, & T. Henning, 27–51, doi: 10.2458/azu_uapress_9780816531240-ch002
André, P., Men’shchikov, A., Bontemps, S., et al. 2010, A&A, 518, L102, doi: 10.1051/0004-6361/201014666
Arzoumanian, D., André, P., Könyves, V., et al. 2019, A&A, 621, A42, doi: 10.1051/0004-6361/201832725
Avison, A., Fuller, G. A., Frimpong, N. A., et al. 2023, MNRAS, 526, 2278, doi: 10.1093/mnras/stad2824
Balfour, S. K., Whitworth, A. P., Hubber, D. A., & Jaffa, S. E. 2015, MNRAS, 453, 2471, doi: 10.1093/mnras/stv1772
Barrow, J. D., Bhavsar, S. P., & Sonoda, D. H. 1985, MNRAS, 216, 17, doi: 10.1093/mnras/216.1.17
Beuther, H., Mottram, J. C., Ahmadi, A., et al. 2018, A&A, 617, A100, doi: 10.1051/0004-6361/201833021
Beuther, H., Gieser, C., Suri, S., et al. 2021, A&A, 649, A113, doi: 10.1051/0004-6361/202040106
Beuther, H., Gieser, C., Soler, J. D., et al. 2024, A&A, 682, A81, doi: 10.1051/0004-6361/202348117
Bonnell, I. A., & Bate, M. R. 2006, MNRAS, 370, 488, doi: 10.1111/j.1365-2966.2006.10495.x
Camacho, V., Vázquez-Semadeni, E., Palau, A., & Zamora-Avilés, M. 2023, MNRAS, 523, 3376, doi: 10.1093/mnras/stad1581
Chen, C.-Y., & Ostriker, E. C. 2015, ApJ, 810, 126, doi: 10.1088/0004-637X/810/2/126
Chung, E. J., Lee, C. W., Kwon, W., Tafalla, M., & Kim, S. 2023, ApJ, 951, 68, doi: 10.3847/1538-4357/acd540
Chung, E. J., Lee, C. W., Kwon, W., et al. 2022, AJ, 164, 175, doi: 10.3847/1538-3881/ac8a43
Clarke, S. D., Jaffa, S. E., & Whitworth, A. P. 2022, MNRAS, 516, 2782, doi: 10.1093/mnras/stac2318
Clarke, S. D., Whitworth, A. P., Duarte-Cabral, A., & Hubber, D. A. 2017, MNRAS, 468, 2489, doi: 10.1093/mnras/stx637
Clarke, S. D., Williams, G. M., & Walch, S. 2020, MNRAS, 497, 4390, doi: 10.1093/mnras/staa2298
Colella, P. 1990, Journal of Computational Physics, 87, 171, doi: 10.1016/0021-9991(90)90233-Q
Contreras, Y., Rathborne, J. M., Guzman, A., et al. 2017, MNRAS, 466, 340, doi: 10.1093/mnras/stw3110
Courant, R., Friedrichs, K., & Lewy, H. 1928, Mathematische Annalen, 100, 32, doi: 10.1007/BF01448839
Csengeri, T., Bontemps, S., Wyrowski, F., et al. 2017, A&A, 600, L10, doi: 10.1051/0004-6361/201629754
Dullemond, C. P., Juhasz, A., Pohl, A., et al. 2012, RADMC-3D: A multi-purpose radiative transfer tool, Astrophysics Source Code Library, record ascl:1202.015
Eswaraiah, C., Li, D., Furuya, R. S., et al. 2021, ApJL, 912, L27, doi: 10.3847/2041-8213/abeb1c
Evans, C. R., & Hawley, J. F. 1988, ApJ, 332, 659, doi: 10.1086/166684
Falle, S. A. E. G. 1991, MNRAS, 250, 581, doi: 10.1093/mnras/250.3.581
Federrath, C., Banerjee, R., Clark, P. C., & Klessen, R. S. 2010, ApJ, 713, 269, doi: 10.1088/0004-637X/713/1/269
Frigo, M., & Johnson, S. 2005, Proceedings of the IEEE, 93, 216, doi: 10.1109/JPROC. 2004.840301
Ganguly, S., Walch, S., Clarke, S. D., & Seifried, D. 2024, MNRAS, 528, 3630, doi: 10.1093/mnras/stae032
Ganguly, S., Walch, S., Seifried, D., Clarke, S. D., & Weis, M. 2023, MNRAS, 525, 721, doi: 10.1093/mnras/stad2054
Gardiner, T. A., & Stone, J. M. 2008, Journal of Computational Physics, 227, 4123, doi: 10.1016/j.jcp.2007.12.017
Gómez, G. C., & Vázquez-Semadeni, E. 2014, ApJ, 791, 124, doi: 10.1088/0004-637X/ 791/2/124
Gu, Q.-L., Liu, T., Li, P. S., et al. 2024, ApJ, 963, 126, doi: 10.3847/1538-4357/ad1bc7
Guzmán, A. E., Sanhueza, P., Contreras, Y., et al. 2015, ApJ, 815, 130, doi: 10.1088/0004-637X/815/2/130
Hacar, A., Tafalla, M., & Alves, J. 2017, A&A, 606, A123, doi: 10.1051/0004-6361/201630348
Hacar, A., Tafalla, M., Forbrich, J., et al. 2018, A&A, 610, A77, doi: 10.1051/0004-6361/201731894
Hacar, A., Tafalla, M., Kauffmann, J., & Kovács, A. 2013, A&A, 554, A55, doi: 10.1051/0004-6361/201220090
Hanawa, T., Kudoh, T., & Tomisaka, K. 2017, ApJ, 848, 2, doi: 10.3847/1538-4357/aa8b6d
Hennemann, M., Motte, F., Schneider, N., et al. 2012, A&A, 543, L3, doi: 10.1051/0004-6361/201219429
Hockney, R. W., & Eastwood, J. W. 1988, Computer simulation using particles
Hodges, J. L. 1958, Arkiv for Matematik, 3, 469, doi: 10.1007/BF02589501
Inoue, T., & Fukui, Y. 2013, ApJL, 774, L31, doi: 10.1088/2041-8205/774/2/L31
Inoue, T., Hennebelle, P., Fukui, Y., et al. 2018, PASJ, 70, S53, doi: 10.1093/pasj/ psx089
Iwasaki, K., & Tomida, K. 2022, ApJ, 934, 174, doi: 10.3847/1538-4357/ac75cc
Kendall, M. G. 1938, Biometrika, 30, 81, doi: 10.1093/biomet/30.1-2.81
Kirk, H., Myers, P. C., Bourke, T. L., et al. 2013, ApJ, 766, 115, doi: 10.1088/0004-637X/766/2/115
Koch, P. M., Tang, Y.-W., Ho, P. T. P., et al. 2022, ApJ, 940, 89, doi: 10.3847/1538-4357/ac96e3
Kumar, M. S. N., Arzoumanian, D., Men’shchikov, A., et al. 2022, A&A, 658, A114, doi: 10.1051/0004-6361/202140363
Li, S., Sanhueza, P., Zhang, Q., et al. 2020, ApJ, 903, 119, doi: 10.3847/1538-4357/abb81f
Li, S., Sanhueza, P., Lu, X., et al. 2022, ApJ, 939, 102, doi: 10.3847/1538-4357/ac94d4
Li, S., Sanhueza, P., Zhang, Q., et al. 2023, ApJ, 949, 109, doi: 10.3847/1538-4357/acc58f
Liu, J., Zhang, Q., Qiu, K., et al. 2020, ApJ, 895, 142, doi: 10.3847/1538-4357/ab9087
Lomax, O., Whitworth, A. P., & Hubber, D. A. 2015, MNRAS, 449, 662, doi: 10.1093/mnras/stv310
Masunaga, H., & Inutsuka, S.-i. 2000, ApJ, 531, 350, doi: 10.1086/308439
Masunaga, H., Miyama, S. M., & Inutsuka, S.-i. 1998, ApJ, 495, 346, doi: 10.1086/305281
McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007, in Astronomical Society of the Pacific Conference Series, Vol. 376, Astronomical Data Analysis Software and Systems XVI, ed. R. A. Shaw, F. Hill, & D. J. Bell, 127
Miyoshi, T., & Kusano, K. 2005, Journal of Computational Physics, 208, 315, doi: 10.1016/j.jcp.2005.02.017
Molinari, S., Pezzuto, S., Cesaroni, R., et al. 2008, A&A, 481, 345, doi: 10.1051/0004-6361:20078661
Molinari, S., Baldeschi, A., Robitaille, T. P., et al. 2019, MNRAS, 486, 4508, doi: 10.1093/mnras/stz900
Morii, K., Sanhueza, P., Nakamura, F., et al. 2023, ApJ, 950, 148, doi: 10.3847/1538-4357/acccea
Müller, E., & Steinmetz, M. 1995, Computer Physics Communications, 89, 45, doi: 10.1016/0010-4655(94)00185-5
Ossenkopf, V., & Henning, T. 1994, A&A, 291, 943
Palau, A., Ballesteros-Paredes, J., Vázquez-Semadeni, E., et al. 2015, MNRAS, 453, 3785, doi: 10.1093/mnras/stv1834
Palau, A., Zhang, Q., Girart, J. M., et al. 2021, ApJ, 912, 159, doi: 10.3847/1538-4357/abee1e
Parker, R. J., & Goodwin, S. P. 2015, MNRAS, 449, 3381, doi: 10.1093/mnras/stv539
Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, Journal of Machine Learning Research, 12, 2825
Peretto, N., Fuller, G. A., André, P., et al. 2014, A&A, 561, A83, doi: 10.1051/0004-6361/201322172
Pineda, J. E., Arzoumanian, D., Andre, P., et al. 2023, in Astronomical Society of the Pacific Conference Series, Vol. 534, Protostars and Planets VII, ed. S. Inutsuka, Y. Aikawa, T. Muto, K. Tomida, & M. Tamura, 233, doi: 10.48550/arXiv.2205. 03935
Press, W. 2007, Numerical Recipes 3rd Edition: The Art of Scientific Computing, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press)
Román-Zúñiga, C. G., Alfaro, E., Palau, A., et al. 2019, MNRAS, 489, 4429, doi: 10.1093/mnras/stz2355
Rosolowsky, E. W., Pineda, J. E., Kauffmann, J., & Goodman, A. A. 2008, ApJ, 679, 1338, doi: 10.1086/587685
Sabatini, G., Bovino, S., Sanhueza, P., et al. 2022, ApJ, 936, 80, doi: 10.3847/1538-4357/ac83aa
Sanhueza, P., Jackson, J. M., Zhang, Q., et al. 2017, ApJ, 841, 97, doi: 10.3847/1538-4357/aa6ff8
Sanhueza, P., Contreras, Y., Wu, B., et al. 2019, ApJ, 886, 102, doi: 10.3847/1538-4357/ab45e9
Schive, H.-Y., ZuHone, J. A., Goldbaum, N. J., et al. 2018, MNRAS, 481, 4815, doi: 10.1093/mnras/sty2586
Scholz, F. W., & Stephens, M. A. 1987, Journal of the American Statistical Association, 82, 918, doi: 10.1080/01621459.1987.10478517
Shimajiri, Y., André, P., Ntormousi, E., et al. 2019, A&A, 632, A83, doi: 10.1051/0004-6361/201935689
Sousbie, T. 2011, MNRAS, 414, 350, doi: 10.1111/j.1365-2966.2011.18394.x Stone, J. M., & Gardiner, T. 2009, NewA, 14, 139, doi: 10.1016/j.newast.2008.06.003
Tafalla, M., & Hacar, A. 2015, A&A, 574, A104, doi: 10.1051/0004-6361/201424576
Tang, Y.-W., Koch, P. M., Peretto, N., et al. 2019, ApJ, 878, 10, doi: 10.3847/1538-4357/ab1484
Toro, E. 2009, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer Berlin Heidelberg)
Traficante, A., Jones, B. M., Avison, A., et al. 2023, MNRAS, 520, 2306, doi: 10.1093/mnras/stad272
Truelove, J. K., Klein, R. I., McKee, C. F., et al. 1997, ApJL, 489, L179, doi: 10.1086/310975
van Leer, B. 2006, Communications in Computational Physics, 1, 192 Vázquez-Semadeni, E., Palau, A., Ballesteros-Paredes, J., Gómez, G. C., & Zamora-Avilés, M. 2019, MNRAS, 490, 3061, doi: 10.1093/mnras/stz2736 Vázquez-Semadeni, E., Zamora-Avilés, M., Galván-Madrid, R., & Forbrich, J. 2018, MNRAS, 479, 3254, doi: 10.1093/mnras/sty1586
Woodward, P., & Colella, P. 1984, Journal of Computational Physics, 54, 115, doi: 10.1016/0021-9991(84)90142-6
Xu, F., Wang, K., Liu, T., et al. 2024, ApJS, 270, 9, doi: 10.3847/1538-4365/acfee5
Yang, S., & Gobbert, M. K. 2009, Applied Mathematics Letters, 22, 325, doi: 10.1016/ j.aml.2008.03.028
Yuan, J., Li, J.-Z., Wu, Y., et al. 2018, ApJ, 852, 12, doi: 10.3847/1538-4357/aa9d40
Zhang, U.-H., Schive, H.-Y., & Chiueh, T. 2018, ApJS, 236, 50, doi: 10.3847/1538-4365/aac49e
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92926-
dc.description.abstract作為高質量恆星前身的緻密核,它們通常形成於高密度的團塊中,並在空間上呈現出多樣化的排列。近年觀測產生的大量數據使得有效地量化這些排列顯得日益重要,而此舉也有利於將這些排列與團塊尺度的特性更有系統地連結。故此,我們引入「正列參數」以量化緻密核排列程度,並展現此參數能有效地辨別這些排列。我們將其應用於ASHES計畫的1.3毫米連續譜資料,發現其量化後數值結果符合人眼判別。此外,我們亦利用正列參數尋求其與團塊尺度之特性間的連結。而我們也更進一步地使用數值模擬來探討緻密核排列與更大尺度結構的形成以及團塊演化的關係性。以結果而言,觀測數據及模擬資料僅表明存在弱相關性,這意味著緻密核的排列在團塊演化過程中可能有著動態且局域的特性。zh_TW
dc.description.abstractDense cores, precursors to high-mass stars, form inside the dense clumps and spatially exhibit diverse degrees of alignments. The large data from recent observations necessitate an efficient method to quantify core alignment and systematically relate it to clump-scale properties. Thus, we introduce the alignment parameter to quantify core alignment, and show that it can effectively distinguish between fragmentation modes. We apply it to 1.3 mm dust continuum data from the ASHES survey, demonstrating this parameter is consistent with visual classification. Nevertheless, we conduct correlations between clump-scale parameters and alignment parameters to assess their relation. Also, numerical simulations are used to check for the relation between the core alignment and structure formation, and clump evolution. Both observations and simulations suggest a weak correlation, implying core alignment might be a dynamic and local feature within clump fragmentation.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-05T16:08:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-05T16:08:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract vii
Contents ix
List of Figures xiii
List of Tables xvii
Denotation xix
Chapter 1 Introduction 1
Chapter 2 Developing the Alignment Parameter 5
2.1 ASHES Observation 5
2.2 Structure Identification 6
2.3 Clump Size 7
2.4 Alignment Parameter 9
2.5 Unweighted Alignment Parameter 11
2.6 Experiments with the Alignment Parameter 12
2.6.1 Simple Arrangements 12
2.6.2 Random Arrangements 13
2.6.3 The Behavior of Alignment Parameter 15
Chapter 3 Simulation 21
3.1 Numerical Methods 21
3.1.1 Discretization 24
3.1.2 Divergence-free Constrain 25
3.1.3 MHD Schemes 27
3.1.4 Self-gravity 29
3.1.5 Sink Particle 30
3.1.6 Equation of State 35
3.2 Initial Conditions 36
3.3 Post-Processing 38
3.3.1 Clump Identification 38
3.3.2 Synthetic Images 41
3.3.3 Aligned Parameter for Synthetic Images 42
3.3.4 Clump Parameters 43
3.3.5 Trace the Evolution 44
Chapter 4 Results 47
4.1 Alignment Parameters on ASHES Samples 47
4.1.1 The Choice of Structure-Finder Criteria 49
4.1.2 Connected Structure 51
4.2 Core Alignment Verse Clump Parameters 52
4.2.1 Intrinsic Properties 52
4.2.2 Clump Evolution 58
4.2.3 Segregation 60
4.2.4 Large-Scale Geometry 62
4.3 Overall Structures in the Post-shock Region in Simulation 63
4.4 Evolutionary Sequence 66
4.5 AL and Clump Parameters in Simulation 73
Chapter 5 Discussion 81
5.1 AL in Observation 81
5.1.1 The Sensitivity of AL on Identified Structures 81
5.1.2 Core Formation and Alignment 82
5.1.3 No Clear Difference Due to Core Alignment 84
5.1.4 The Observation Bias 90
5.2 AL in Simulation 92
5.2.1 No Monotonic Evolution in AL 92
5.2.2 Forming in Filament or Hub 102
Chapter 6 Conclusion 111
References 115
Appendix A - Identified Cores in ASHES 125
A.1 Images 125
Appendix B - Structure Evolution in Simulation 133
B.1 Images 133
-
dc.language.isoen-
dc.subject恆星形成區域zh_TW
dc.subject恆星形成zh_TW
dc.subject磁流體動力模擬zh_TW
dc.subject原星團zh_TW
dc.subject星際介質zh_TW
dc.subjectStar formationen
dc.subjectStar forming regionsen
dc.subjectMagnetohydrodynamical simulationsen
dc.subjectProtoclustersen
dc.subjectInterstellar mediumen
dc.title正列參數:恆星形成區域團塊之碎塊排列的量化zh_TW
dc.titleAlignment Parameter: Quantify Dense Core Alignment in Star Formation Regionsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor湯雅雯zh_TW
dc.contributor.coadvisorYa-Wen Tangen
dc.contributor.oralexamcommittee平野尚美;何英宏zh_TW
dc.contributor.oralexamcommitteeNaomi Hirano;Daniel Harsonoen
dc.subject.keyword恆星形成,恆星形成區域,星際介質,原星團,磁流體動力模擬,zh_TW
dc.subject.keywordStar formation,Star forming regions,Interstellar medium,Protoclusters,Magnetohydrodynamical simulations,en
dc.relation.page148-
dc.identifier.doi10.6342/NTU202401202-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-06-28-
dc.contributor.author-college理學院-
dc.contributor.author-dept天文物理研究所-
顯示於系所單位:天文物理研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf40.06 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved