Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92911
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅敏輝zh_TW
dc.contributor.advisorMin-Hui Loen
dc.contributor.author肖鶴鳴zh_TW
dc.contributor.authorHe-Ming Xiaoen
dc.date.accessioned2024-07-04T16:09:47Z-
dc.date.available2024-07-05-
dc.date.copyright2024-07-04-
dc.date.issued2024-
dc.date.submitted2024-06-25-
dc.identifier.citationAbram, N. J., Gagan, M. K., Cole, J. E., Hantoro, W. S., & Mudelsee, M. (2008). Recent intensification of tropical climate variability in the Indian Ocean. Nature Geoscience, 1(12), 849-853. https://doi.org/10.1038/ngeo357
Alexander, M. A., Bladé, I., Newman, M., Lanzante, J. R., Lau, N.-C., & Scott, J. D. (2002). The Atmospheric Bridge: The Influence of ENSO Teleconnections on Air-Sea Interaction over the Global Oceans. Journal of Climate, 15, 2205. https://doi.org/10.1175/1520-0442(2002)015<2205:Tabtio>2.0.Co;2
Annamalai, H., Xie, S. P., McCreary, J. P., & Murtugudde, R. (2005). Impact of Indian Ocean Sea Surface Temperature on Developing El Niño. Journal of Climate, 18(2), 302-319. https://doi.org/https://doi.org/10.1175/JCLI-3268.1
Arcodia, M. C., & Kirtman, B. P. (2023). Using simplified linear and nonlinear models to assess ENSO-modulated MJO teleconnections. Climate Dynamics, 61(11), 5443-5463. https://doi.org/10.1007/s00382-023-06864-x
Ashok, K., Behera, S. K., Rao, S. A., Weng, H., & Yamagata, T. (2007). El Niño Modoki and its possible teleconnection. Journal of Geophysical Research: Oceans, 112(C11). https://doi.org/https://doi.org/10.1029/2006JC003798
Ashok, K., & Yamagata, T. (2009). The El Niño with a difference. Nature, 461(7263), 481-484. https://doi.org/10.1038/461481a
Badger, A. M., & Dirmeyer, P. A. (2016). Remote tropical and sub-tropical responses to Amazon deforestation. Climate Dynamics, 46(9), 3057-3066. https://doi.org/10.1007/s00382-015-2752-5
Bai, H., & Schumacher, C. (2022). Topographic Influences on Diurnally Driven MJO Rainfall Over the Maritime Continent. Journal of Geophysical Research: Atmospheres, 127(6), e2021JD035905. https://doi.org/https://doi.org/10.1029/2021JD035905
Behera, S. K., Luo, J. J., Masson, S., Rao, S. A., Sakum, H., & Yamagata, T. (2006). A CGCM study on the interaction between IOD and ENSO. Journal of Climate, 19(9), 1688-1705. https://doi.org/Doi 10.1175/Jcli3797.1
Behera, S. K., Luo, J. J., Masson, S., Rao, S. A., Sakuma, H., & Yamagata, T. (2006). A CGCM Study on the Interaction between IOD and ENSO. Journal of Climate, 19(9), 1688-1705. https://doi.org/https://doi.org/10.1175/JCLI3797.1
Behera, S. K., & Yamagata, T. (2003). Influence of the Indian Ocean Dipole on the Southern Oscillation. Journal of the Meteorological Society of Japan. Ser. II, 81(1), 169-177. https://doi.org/10.2151/jmsj.81.169
Cai, W., Ng, B., Wang, G., Santoso, A., Wu, L., & Yang, K. (2022). Increased ENSO sea surface temperature variability under four IPCC emission scenarios. Nature Climate Change, 12(3), 228-231. https://doi.org/10.1038/s41558-022-01282-z
Cai, W., Zheng, X.-T., Weller, E., Collins, M., Cowan, T., Lengaigne, M., Yu, W., & Yamagata, T. (2013). Projected response of the Indian Ocean Dipole to greenhouse warming. Nature Geoscience, 6(12), 999-1007. https://doi.org/10.1038/ngeo2009
Chan, D., Zhang, Y., Wu, Q., & Dai, X. (2020). Quantifying the dynamics of the interannual variabilities of the wintertime East Asian Jet Core. Climate Dynamics, 54(3), 2447-2463. https://doi.org/10.1007/s00382-020-05127-3
Chang, C.-P., Wang, Z., Ju, J., & Li, T. (2004). On the Relationship between Western Maritime Continent Monsoon Rainfall and ENSO during Northern Winter. Journal of Climate, 17(3), 665-672. https://doi.org/https://doi.org/10.1175/1520-0442(2004)017<0665:OTRBWM>2.0.CO;2
Chang, C.-P., Wang, Z., McBride, J., & Liu, C.-H. (2005). Annual Cycle of Southeast Asia—Maritime Continent Rainfall and the Asymmetric Monsoon Transition. Journal of Climate, 18(2), 287-301. https://doi.org/https://doi.org/10.1175/JCLI-3257.1
Chen, C.-C., Lin, H.-W., Yu, J.-Y., & Lo, M.-H. (2016). The 2015 Borneo fires: What have we learned from the 1997 and 2006 El Niños? Environmental Research Letters, 11(10), 104003. https://doi.org/10.1088/1748-9326/11/10/104003
Chen, C.-C., Lo, M.-H., Im, E.-S., Yu, J.-Y., Liang, Y.-C., Chen, W.-T., Tang, I., Lan, C.-W., Wu, R.-J., & Chien, R.-Y. (2019). Thermodynamic and Dynamic Responses to Deforestation in the Maritime Continent: A Modeling Study. Journal of Climate, 32(12), 3505-3527. https://doi.org/https://doi.org/10.1175/JCLI-D-18-0310.1
Chen, L., Li, T., & Yu, Y. (2015). Causes of Strengthening and Weakening of ENSO Amplitude under Global Warming in Four CMIP5 Models. Journal of Climate, 28(8), 3250-3274. https://doi.org/https://doi.org/10.1175/JCLI-D-14-00439.1
Chen, L., Li, T., Yu, Y., & Behera, S. K. (2017). A possible explanation for the divergent projection of ENSO amplitude change under global warming. Climate Dynamics, 49(11), 3799-3811. https://doi.org/10.1007/s00382-017-3544-x
Clark, C. O., Webster, P. J., & Cole, J. E. (2003). Interdecadal Variability of the Relationship between the Indian Ocean Zonal Mode and East African Coastal Rainfall Anomalies. Journal of Climate, 16(3), 548-554. https://doi.org/https://doi.org/10.1175/1520-0442(2003)016<0548:IVOTRB>2.0.CO;2
Curran, L. M., Caniago, I., Paoli, G. D., Astianti, D., Kusneti, M., Leighton, M., Nirarita, C. E., & Haeruman, H. (1999). Impact of El Niño and Logging on Canopy Tree Recruitment in Borneo. Science, 286(5447), 2184-2188. https://doi.org/doi:10.1126/science.286.5447.2184
Dai, Y., Feldstein, S. B., Tan, B., & Lee, S. (2017). Formation Mechanisms of the Pacific–North American Teleconnection with and without Its Canonical Tropical Convection Pattern. Journal of Climate, 30(9), 3139-3155. https://doi.org/https://doi.org/10.1175/JCLI-D-16-0411.1
Dong, B., Sutton, R. T., & Scaife, A. A. (2006). Multidecadal modulation of El Niño–Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophysical Research Letters, 33(8). https://doi.org/https://doi.org/10.1029/2006GL025766
Fanin, T., & van der Werf, G. R. (2017). Precipitation–fire linkages in Indonesia (1997–2015). Biogeosciences, 14(18), 3995-4008. https://doi.org/10.5194/bg-14-3995-2017
Feng, J., Chen, W., & Li, Y. (2017). Asymmetry of the winter extra-tropical teleconnections in the Northern Hemisphere associated with two types of ENSO. Climate Dynamics, 48(7), 2135-2151. https://doi.org/10.1007/s00382-016-3196-2
Field, R. D., van der Werf, G. R., & Shen, S. S. P. (2009). Human amplification of drought-induced biomass burning in Indonesia since 1960. Nature Geoscience, 2(3), 185-188. https://doi.org/10.1038/ngeo443
Gong, T., Feldstein, S., & Lee, S. (2017). The Role of Downward Infrared Radiation in the Recent Arctic Winter Warming Trend. Journal of Climate, 30(13), 4937-4949. https://doi.org/https://doi.org/10.1175/JCLI-D-16-0180.1
Gong, Y., Li, T., & Chen, L. (2020). Interdecadal modulation of ENSO amplitude by the Atlantic multi-decadal oscillation (AMO). Climate Dynamics, 55(9), 2689-2702. https://doi.org/10.1007/s00382-020-05408-x
Hamada, J.-I., Mori, S., Kubota, H., Yamanaka, M. D., Haryoko, U., Lestari, S., Sulistyowati, R., & Syamsudin, F. (2012). Interannual Rainfall Variability over Northwestern Jawa and its Relation to the Indian Ocean Dipole and El Niño-Southern Oscillation Events. SOLA, 8, 69-72. https://doi.org/10.2151/sola.2012-018
Han, Z., Luo, F., Li, S., Gao, Y., Furevik, T., & Svendsen, L. (2016). Simulation by CMIP5 models of the atlantic multidecadal oscillation and its climate impacts. Advances in Atmospheric Sciences, 33(12), 1329-1342. https://doi.org/10.1007/s00376-016-5270-4
Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7(1), 109. https://doi.org/10.1038/s41597-020-0453-3
Hasler, N., Werth, D., & Avissar, R. (2009). Effects of Tropical Deforestation on Global Hydroclimate: A Multimodel Ensemble Analysis. Journal of Climate, 22(5), 1124-1141. https://doi.org/https://doi.org/10.1175/2008JCLI2157.1
Hendon, H. H. (2003). Indonesian Rainfall Variability: Impacts of ENSO and Local Air–Sea Interaction. Journal of Climate, 16(11), 1775-1790. https://doi.org/https://doi.org/10.1175/1520-0442(2003)016<1775:IRVIOE>2.0.CO;2
Hirahara, S., Ishii, M., & Fukuda, Y. (2014). Centennial-Scale Sea Surface Temperature Analysis and Its Uncertainty. Journal of Climate, 27(1), 57-75. https://doi.org/https://doi.org/10.1175/JCLI-D-12-00837.1
Hoerling, M. P., Kumar, A., & Zhong, M. (1997). El Niño, La Niña, and the Nonlinearity of Their Teleconnections. Journal of Climate, 10(8), 1769-1786. https://doi.org/https://doi.org/10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2
Hoskins, B. J., & Ambrizzi, T. (1993). Rossby Wave Propagation on a Realistic Longitudinally Varying Flow. Journal of Atmospheric Sciences, 50(12), 1661-1671. https://doi.org/https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2
Hoskins, B. J., & Jin, F.-F. (1991). The initial value problem for tropical perturbations to a baroclinic atmosphere. Quarterly Journal of the Royal Meteorological Society, 117(498), 299-317. https://doi.org/https://doi.org/10.1002/qj.49711749803
Hsu, H.-H. (1996). Global View of the intraseasonal Oscillation during Northern Winter. Journal of Climate, 9(10), 2386-2406. https://doi.org/https://doi.org/10.1175/1520-0442(1996)009<2386:GVOTIO>2.0.CO;2
Hsu, H.-H., & Lin, S.-H. (1992). Global Teleconnections in the 250-mb Streamfunction Field during the Northern Hemisphere Winter. Monthly Weather Review, 120(7), 1169-1190. https://doi.org/https://doi.org/10.1175/1520-0493(1992)120<1169:GTITMS>2.0.CO;2
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., & Zhang, H.-M. (2017). Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. Journal of Climate, 30(20), 8179-8205. https://doi.org/https://doi.org/10.1175/JCLI-D-16-0836.1
Huang, S., & Oey, L. (2019). Malay Archipelago Forest Loss to Cash Crops and Urban Expansion Contributes to Weaken the Asian Summer Monsoon: An Atmospheric Modeling Study. Journal of Climate, 32(11), 3189-3205. https://doi.org/https://doi.org/10.1175/JCLI-D-18-0467.1
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., . . . Marshall, S. (2013). The Community Earth System Model: A Framework for Collaborative Research. Bulletin of the American Meteorological Society, 94(9), 1339-1360. https://doi.org/https://doi.org/10.1175/BAMS-D-12-00121.1
Ihara, C., Kushnir, Y., & Cane, M. A. (2008). Warming Trend of the Indian Ocean SST and Indian Ocean Dipole from 1880 to 2004. Journal of Climate, 21(10), 2035-2046. https://doi.org/https://doi.org/10.1175/2007JCLI1945.1
Jeong, H., Park, H.-S., Stuecker, M. F., & Yeh, S.-W. (2022). Distinct impacts of major El Niño events on Arctic temperatures due to differences in eastern tropical Pacific sea surface temperatures. Science Advances, 8(4), eabl8278. https://doi.org/doi:10.1126/sciadv.abl8278
Jin, F., & Hoskins, B. J. (1995). The Direct Response to Tropical Heating in a Baroclinic Atmosphere. Journal of Atmospheric Sciences, 52(3), 307-319. https://doi.org/https://doi.org/10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2
Kao, H.-Y., & Yu, J.-Y. (2009). Contrasting Eastern-Pacific and Central-Pacific Types of ENSO. Journal of Climate, 22(3), 615-632. https://doi.org/10.1175/2008jcli2309.1
Karoly, D. J. (1983). Rossby wave propagation in a barotropic atmosphere. Dynamics of Atmospheres and Oceans, 7(2), 111-125. https://doi.org/https://doi.org/10.1016/0377-0265(83)90013-1
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., . . . Vertenstein, M. (2015). The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability. Bulletin of the American Meteorological Society, 96(8), 1333-1349. https://doi.org/https://doi.org/10.1175/BAMS-D-13-00255.1
Khoir, A. N. u., Ooi, M. C. G., & Napi, N. N. L. B. M. (2023). Long-Term Spatiotemporal Distribution of Fire Over Maritime Continent and Their Responses to Climate Anomalies. In K. P. Vadrevu, T. Ohara, & C. Justice (Eds.), Vegetation Fires and Pollution in Asia (pp. 173-186). Springer International Publishing. https://doi.org/10.1007/978-3-031-29916-2_11
Kim, J.-S., Jeong, S.-J., Kug, J.-S., & Williams, M. (2019). Role of Local Air-Sea Interaction in Fire Activity Over Equatorial Asia. Geophysical Research Letters, 46(24), 14789-14797. https://doi.org/https://doi.org/10.1029/2019GL085943
Klein, S. A., Soden, B. J., & Lau, N.-C. (1999). Remote Sea Surface Temperature Variations during ENSO: Evidence for a Tropical Atmospheric Bridge. Journal of Climate, 12, 917. https://doi.org/10.1175/1520-0442(1999)012<0917:Rsstvd>2.0.Co;2
Kosaka, Y., Nakamura, H., Watanabe, M., & Kimoto, M. (2009). Analysis on the Dynamics of a Wave-like Teleconnection Pattern along the Summertime Asian Jet Based on a Reanalysis Dataset and Climate Model Simulations. Journal of the Meteorological Society of Japan. Ser. II, 87(3), 561-580. https://doi.org/10.2151/jmsj.87.561
Kug, J.-S., An, S.-I., Jin, F.-F., & Kang, I.-S. (2005). Preconditions for El Niño and La Niña onsets and their relation to the Indian Ocean. Geophysical Research Letters, 32(5). https://doi.org/https://doi.org/10.1029/2004GL021674
Kumagai, T. o., Kanamori, H., & Yasunari, T. (2013). Deforestation-induced reduction in rainfall. Hydrological Processes, 27(25), 3811-3814. https://doi.org/https://doi.org/10.1002/hyp.10060
Lau, N.-C., & Nath, M. J. (1996). The Role of the "Atmospheric Bridge" in Linking Tropical Pacific ENSO Events to Extratropical SST Anomalies. Journal of Climate, 9(9), 2036-2057. http://www.jstor.org/stable/26201392
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier, N., Ghimire, B., van Kampenhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F., Li, H. Y., Lombardozzi, D., Riley, W. J., Sacks, W. J., Shi, M. J., Vertenstein, M., . . . Zeng, X. B. (2019). The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. Journal of Advances in Modeling Earth Systems, 11(12), 4245-4287. https://doi.org/10.1029/2018ms001583
Lee, R. W., Woolnough, S. J., Charlton-Perez, A. J., & Vitart, F. (2019). ENSO Modulation of MJO Teleconnections to the North Atlantic and Europe. Geophysical Research Letters, 46(22), 13535-13545. https://doi.org/https://doi.org/10.1029/2019GL084683
Lee, S., Gong, T., Feldstein, S. B., Screen, J. A., & Simmonds, I. (2017). Revisiting the Cause of the 1989–2009 Arctic Surface Warming Using the Surface Energy Budget: Downward Infrared Radiation Dominates the Surface Fluxes. Geophysical Research Letters, 44(20), 10,654-610,661. https://doi.org/https://doi.org/10.1002/2017GL075375
Lee, S., Gong, T., Johnson, N., Feldstein, S. B., & Pollard, D. (2011). On the Possible Link between Tropical Convection and the Northern Hemisphere Arctic Surface Air Temperature Change between 1958 and 2001. Journal of Climate, 24(16), 4350-4367. https://doi.org/https://doi.org/10.1175/2011JCLI4003.1
Lee, T.-H., & Lo, M.-H. (2021). The role of El Niño in modulating the effects of deforestation in the Maritime Continent. Environmental Research Letters, 16(5), 054056. https://doi.org/10.1088/1748-9326/abe88e
Lee, T.-H., Yu, J.-Y., Lin, Y.-F., Lo, M.-H., & Xiao, H.-M. (2023). The Potential Influence of Maritime Continent Deforestation on El Niño-Southern Oscillation: Insights From Idealized Modeling Experiments. Geophysical Research Letters, 50(20), e2023GL105012. https://doi.org/https://doi.org/10.1029/2023GL105012
Leung, G. R., Grant, L. D., & van den Heever, S. C. (2024). Deforestation-Driven Increases in Shallow Clouds Are Greatest in Drier, Low-Aerosol Regions of Southeast Asia. Geophysical Research Letters, 51(10), e2023GL107678. https://doi.org/https://doi.org/10.1029/2023GL107678
Lo, M.-H., & Famiglietti, J. S. (2010). Effect of water table dynamics on land surface hydrologic memory [https://doi.org/10.1029/2010JD014191]. Journal of Geophysical Research: Atmospheres, 115(D22). https://doi.org/https://doi.org/10.1029/2010JD014191
Lorenz, R., Pitman, A. J., & Sisson, S. A. (2016). Does Amazonian deforestation cause global effects; can we be sure? Journal of Geophysical Research: Atmospheres, 121(10), 5567-5584. https://doi.org/https://doi.org/10.1002/2015JD024357
Luo, J.-J., Zhang, R., Behera, S. K., Masumoto, Y., Jin, F.-F., Lukas, R., & Yamagata, T. (2010). Interaction between El Niño and Extreme Indian Ocean Dipole. Journal of Climate, 23(3), 726-742. https://doi.org/https://doi.org/10.1175/2009JCLI3104.1
Mahmood, R., Pielke Sr., R. A., Hubbard, K. G., Niyogi, D., Dirmeyer, P. A., McAlpine, C., Carleton, A. M., Hale, R., Gameda, S., Beltrán-Przekurat, A., Baker, B., McNider, R., Legates, D. R., Shepherd, M., Du, J., Blanken, P. D., Frauenfeld, O. W., Nair, U. S., & Fall, S. (2014). Land cover changes and their biogeophysical effects on climate. International Journal of Climatology, 34(4), 929-953. https://doi.org/https://doi.org/10.1002/joc.3736
Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F., & Hansen, M. C. (2014). Primary forest cover loss in Indonesia over 2000–2012. Nature Climate Change, 4(8), 730-735. https://doi.org/10.1038/nclimate2277
McAlpine, C. A., Johnson, A., Salazar, A., Syktus, J., Wilson, K., Meijaard, E., Seabrook, L., Dargusch, P., Nordin, H., & Sheil, D. (2018). Forest loss and Borneo’s climate. Environmental Research Letters, 13(4), 044009. https://doi.org/10.1088/1748-9326/aaa4ff
McKenna, S., Santoso, A., Gupta, A. S., Taschetto, A. S., & Cai, W. (2020). Indian Ocean Dipole in CMIP5 and CMIP6: characteristics, biases, and links to ENSO. Scientific Reports, 10(1), 11500. https://doi.org/10.1038/s41598-020-68268-9
Medvigy, D., Walko, R. L., Otte, M. J., & Avissar, R. (2013). Simulated Changes in Northwest U.S. Climate in Response to Amazon Deforestation*. Journal of Climate, 26(22), 9115-9136. https://doi.org/https://doi.org/10.1175/JCLI-D-12-00775.1
Moon, J.-Y., Wang, B., & Ha, K.-J. (2011). ENSO regulation of MJO teleconnection. Climate Dynamics, 37(5), 1133-1149. https://doi.org/10.1007/s00382-010-0902-3
Mori, M., & Watanabe, M. (2008). The Growth and Triggering Mechanisms of the PNA: A MJO-PNA Coherence. Journal of the Meteorological Society of Japan. Ser. II, 86(1), 213-236. https://doi.org/10.2151/jmsj.86.213
Neale, R., & Slingo, J. (2003). The Maritime Continent and Its Role in the Global Climate: A GCM Study. Journal of Climate, 16(5), 834-848. https://doi.org/https://doi.org/10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2
Nur’utami, M. N., & Hidayat, R. (2016). Influences of IOD and ENSO to Indonesian Rainfall Variability: Role of Atmosphere-ocean Interaction in the Indo-pacific Sector. Procedia Environmental Sciences, 33, 196-203. https://doi.org/https://doi.org/10.1016/j.proenv.2016.03.070
Overland, J. E., Adams, J. M., & Bond, N. A. (1999). Decadal Variability of the Aleutian Low and Its Relation to High-Latitude Circulation. Journal of Climate, 12(5), 1542-1548. https://doi.org/https://doi.org/10.1175/1520-0442(1999)012<1542:DVOTAL>2.0.CO;2
Pan, X., Chin, M., Ichoku, C. M., & Field, R. D. (2018). Connecting Indonesian Fires and Drought With the Type of El Niño and Phase of the Indian Ocean Dipole During 1979–2016. Journal of Geophysical Research: Atmospheres, 123(15), 7974-7988. https://doi.org/https://doi.org/10.1029/2018JD028402
Peatman, S. C., Matthews, A. J., & Stevens, D. P. (2014). Propagation of the Madden–Julian Oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Quarterly Journal of the Royal Meteorological Society, 140(680), 814-825. https://doi.org/https://doi.org/10.1002/qj.2161
Pendergrass, A. G., Conley, A., & Vitt, F. M. (2018). Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5. Earth Syst. Sci. Data, 10(1), 317-324. https://doi.org/10.5194/essd-10-317-2018
Pitman, A. J., & Lorenz, R. (2016). Scale dependence of the simulated impact of Amazonian deforestation on regional climate. Environmental Research Letters, 11(9), 094025. https://doi.org/10.1088/1748-9326/11/9/094025
Polcher, J., & Laval, K. (1994). The impact of African and Amazonian deforestation on tropical climate. Journal of Hydrology, 155(3), 389-405. https://doi.org/https://doi.org/10.1016/0022-1694(94)90179-1
Poli, P., Hersbach, H., Dee, D. P., Berrisford, P., Simmons, A. J., Vitart, F., Laloyaux, P., Tan, D. G. H., Peubey, C., Thépaut, J.-N., Trémolet, Y., Hólm, E. V., Bonavita, M., Isaksen, L., & Fisher, M. (2016). ERA-20C: An Atmospheric Reanalysis of the Twentieth Century. Journal of Climate, 29(11), 4083-4097. https://doi.org/https://doi.org/10.1175/JCLI-D-15-0556.1
Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., & Laaksonen, A. (2022). The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment, 3(1), 168. https://doi.org/10.1038/s43247-022-00498-3
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., & Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108(D14). https://doi.org/https://doi.org/10.1029/2002JD002670
Rodionov, S. N., Overland, J. E., & Bond, N. A. (2005). The Aleutian Low and Winter Climatic Conditions in the Bering Sea. Part I: Classification. Journal of Climate, 18(1), 160-177. https://doi.org/https://doi.org/10.1175/JCLI3253.1
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401(6751), 360-363. https://doi.org/10.1038/43854
Sardeshmukh, P. D., & Hoskins, B. J. (1988). The Generation of Global Rotational Flow by Steady Idealized Tropical Divergence. Journal of Atmospheric Sciences, 45(7), 1228-1251. https://doi.org/https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2
Schneck, R., & Mosbrugger, V. (2011). Simulated climate effects of Southeast Asian deforestation: Regional processes and teleconnection mechanisms. Journal of Geophysical Research: Atmospheres, 116(D11). https://doi.org/https://doi.org/10.1029/2010JD015450
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M., & Rudolf, B. (2014). GPCC''s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theoretical and Applied Climatology, 115(1), 15-40. https://doi.org/10.1007/s00704-013-0860-x
Schott, F. A., Xie, S.-P., & McCreary Jr., J. P. (2009). Indian Ocean circulation and climate variability. Reviews of Geophysics, 47(1). https://doi.org/https://doi.org/10.1029/2007RG000245
Seager, R., Harnik, N., Robinson, W. A., Kushnir, Y., Ting, M., Huang, H.-P., & Velez, J. (2005). Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability. Quarterly Journal of the Royal Meteorological Society, 131(608), 1501-1527. https://doi.org/https://doi.org/10.1256/qj.04.96
Seo, K.-H., & Lee, H.-J. (2017). Mechanisms for a PNA-Like Teleconnection Pattern in Response to the MJO. Journal of the Atmospheric Sciences, 74(6), 1767-1781. https://doi.org/https://doi.org/10.1175/JAS-D-16-0343.1
Simmons, A. J., Wallace, J. M., & Branstator, G. W. (1983). Barotropic Wave Propagation and Instability, and Atmospheric Teleconnection Patterns. Journal of Atmospheric Sciences, 40(6), 1363-1392. https://doi.org/https://doi.org/10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2
Sun, S., Fang, Y., Zu, Y., Liu, L., & Li, K. (2022). Increased occurrences of early Indian Ocean Dipole under global warming. Science Advances, 8(47), eadd6025. https://doi.org/doi:10.1126/sciadv.add6025
Swenson, S. C., & Lawrence, D. M. (2014). Assessing a dry surface layer-based soil resistance parameterization for the Community Land Model using GRACE and FLUXNET-MTE data. Journal of Geophysical Research: Atmospheres, 119(17), 10,299-210,312. https://doi.org/https://doi.org/10.1002/2014JD022314
Takaya, K., & Nakamura, H. (2001). A Formulation of a Phase-Independent Wave-Activity Flux for Stationary and Migratory Quasigeostrophic Eddies on a Zonally Varying Basic Flow. Journal of the Atmospheric Sciences, 58(6), 608-627. https://doi.org/https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2
Tan, G.-R., Jin, F.-F., Ren, H.-L., & Sun, Z.-B. (2014). The role of eddy feedback in the excitation of the NAO. Meteorological Applications, 21(3), 768-776. https://doi.org/https://doi.org/10.1002/met.1415
Taufik, M., Torfs, P. J. J. F., Uijlenhoet, R., Jones, P. D., Murdiyarso, D., & Van Lanen, H. A. J. (2017). Amplification of wildfire area burnt by hydrological drought in the humid tropics. Nature Climate Change, 7(6), 428-431. https://doi.org/10.1038/nclimate3280
Ting, M., & Yu, L. (1998). Steady Response to Tropical Heating in Wavy Linear and Nonlinear Baroclinic Models. Journal of the Atmospheric Sciences, 55(24), 3565-3582. https://doi.org/https://doi.org/10.1175/1520-0469(1998)055<3565:SRTTHI>2.0.CO;2
Tokinaga, H., Xie, S.-P., Timmermann, A., McGregor, S., Ogata, T., Kubota, H., & Okumura, Y. M. (2012). Regional Patterns of Tropical Indo-Pacific Climate Change: Evidence of the Walker Circulation Weakening. Journal of Climate, 25(5), 1689-1710. https://doi.org/https://doi.org/10.1175/JCLI-D-11-00263.1
Tölle, M. H., Engler, S., & Panitz, H.-J. (2017). Impact of Abrupt Land Cover Changes by Tropical Deforestation on Southeast Asian Climate and Agriculture. Journal of Climate, 30(7), 2587-2600. https://doi.org/https://doi.org/10.1175/JCLI-D-16-0131.1
Trenberth, K. E., Branstator, G. W., Karoly, D., Kumar, A., Lau, N.-C., & Ropelewski, C. (1998). Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. Journal of Geophysical Research: Oceans, 103(C7), 14291-14324. https://doi.org/https://doi.org/10.1029/97JC01444
Tseng, K.-C., Maloney, E., & Barnes, E. (2019). The Consistency of MJO Teleconnection Patterns: An Explanation Using Linear Rossby Wave Theory. Journal of Climate, 32(2), 531-548. https://doi.org/https://doi.org/10.1175/JCLI-D-18-0211.1
Tseng, K.-C., Maloney, E., & Barnes, E. A. (2020). The Consistency of MJO Teleconnection Patterns on Interannual Time Scales. Journal of Climate, 33(9), 3471-3486. https://doi.org/https://doi.org/10.1175/JCLI-D-19-0510.1
Turetsky, M. R., Benscoter, B., Page, S., Rein, G., van der Werf, G. R., & Watts, A. (2015). Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience, 8(1), 11-14. https://doi.org/10.1038/ngeo2325
van der Molen, M. K., Dolman, A. J., Waterloo, M. J., & Bruijnzeel, L. A. (2006). Climate is affected more by maritime than by continental land use change: A multiple scale analysis. Global and Planetary Change, 54(1), 128-149. https://doi.org/https://doi.org/10.1016/j.gloplacha.2006.05.005
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., & Kasibhatla, P. S. (2017). Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data, 9(2), 697-720. https://doi.org/10.5194/essd-9-697-2017
Wallace, J. M., & Gutzler, D. S. (1981). Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter. Monthly Weather Review, 109(4), 784-812. https://doi.org/https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
Wang, H., Kumar, A., Murtugudde, R., Narapusetty, B., & Seip, K. L. (2019). Covariations between the Indian Ocean dipole and ENSO: a modeling study. Climate Dynamics, 53(9), 5743-5761. https://doi.org/10.1007/s00382-019-04895-x
Wang, X., & Wang, C. (2014). Different impacts of various El Niño events on the Indian Ocean Dipole. Climate Dynamics, 42(3), 991-1005. https://doi.org/10.1007/s00382-013-1711-2
Wang, Y., Hu, K., Huang, G., & Tao, W. (2021). Asymmetric impacts of El Niño and La Niña on the Pacific–North American teleconnection pattern: the role of subtropical jet stream. Environmental Research Letters, 16(11), 114040. https://doi.org/10.1088/1748-9326/ac31ed
Watanabe, M., & Kimoto, M. (2000). Atmosphere-ocean thermal coupling in the North Atlantic: A positive feedback. Quarterly Journal of the Royal Meteorological Society, 126(570), 3343-3369. https://doi.org/https://doi.org/10.1002/qj.49712657017
Webster, P. J., Moore, A. M., Loschnigg, J. P., & Leben, R. R. (1999). Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401(6751), 356-360. https://doi.org/10.1038/43848
Wei, S., Wang, X., & Xie, Q. (2023). Strengthening effect of Maritime Continent deforestation on the precipitation decline over southern China during late winter and early spring. Climate Dynamics, 60(3), 1173-1185. https://doi.org/10.1007/s00382-022-06362-6
Werth, D., & Avissar, R. (2005). The local and global effects of Southeast Asian deforestation. Geophysical Research Letters, 32(20). https://doi.org/https://doi.org/10.1029/2005GL022970
Wu, Z. (2003). A Shallow CISK, Deep Equilibrium Mechanism for the Interaction between Large-Scale Convection and Large-Scale Circulations in the Tropics. Journal of the Atmospheric Sciences, 60(2), 377-392. https://doi.org/https://doi.org/10.1175/1520-0469(2003)060<0377:ASCDEM>2.0.CO;2
Xiao, H.-M., Hsu, H.-H., Lee, T.-H., Jong, B.-T., Yu, J.-Y., Liang, Y.-C., & Lo, M.-H. (2024). The Remote Response in the Northern Pacific Climate During Winter to Deforestation in the Maritime Continent. Journal of Geophysical Research: Atmospheres, 129(7), e2023JD040372. https://doi.org/https://doi.org/10.1029/2023JD040372
Xiao, H.-M., Lo, M.-H., & Yu, J.-Y. (2022). The increased frequency of combined El Niño and positive IOD events since 1965s and its impacts on maritime continent hydroclimates. Scientific Reports, 12(1), 7532. https://doi.org/10.1038/s41598-022-11663-1
Xue, J., Luo, J.-J., Zhang, W., & Yamagata, T. (2022). ENSO–IOD Inter-Basin Connection Is Controlled by the Atlantic Multidecadal Oscillation. Geophysical Research Letters, 49(24), e2022GL101571. https://doi.org/https://doi.org/10.1029/2022GL101571
Yamagata, T., Behera, S. K., Luo, J.-J., Masson, S., Jury, M. R., & Rao, S. A. (2004). Coupled Ocean-Atmosphere Variability in the Tropical Indian Ocean. In Earth''s Climate (pp. 189-211). https://doi.org/https://doi.org/10.1029/147GM12
Yang, S., Lau, K.-M., & Kim, K.-M. (2002). Variations of the East Asian Jet Stream and Asian–Pacific–American Winter Climate Anomalies. Journal of Climate, 15(3), 306-325. https://doi.org/https://doi.org/10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2
Yang, Y., Xie, S.-P., Wu, L., Kosaka, Y., Lau, N.-C., & Vecchi, G. A. (2015). Seasonality and Predictability of the Indian Ocean Dipole Mode: ENSO Forcing and Internal Variability. Journal of Climate, 28(20), 8021-8036. https://doi.org/https://doi.org/10.1175/JCLI-D-15-0078.1
Yoo, C., Lee, S., & Feldstein, S. B. (2012). Arctic Response to an MJO-Like Tropical Heating in an Idealized GCM. Journal of the Atmospheric Sciences, 69(8), 2379-2393. https://doi.org/https://doi.org/10.1175/JAS-D-11-0261.1
Yu, J.-Y., & Kao, H.-Y. (2007). Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. Journal of Geophysical Research: Atmospheres, 112(D13). https://doi.org/https://doi.org/10.1029/2006JD007654
Yu, J.-Y., Kao, P.-k., Paek, H., Hsu, H.-H., Hung, C.-w., Lu, M.-M., & An, S.-I. (2015). Linking Emergence of the Central Pacific El Niño to the Atlantic Multidecadal Oscillation. Journal of Climate, 28(2), 651-662. https://doi.org/https://doi.org/10.1175/JCLI-D-14-00347.1
Yu, J.-Y., & Lau, K. M. (2005). Contrasting Indian Ocean SST variability with and without ENSO influence: A coupled atmosphere-ocean GCM study. Meteorology and Atmospheric Physics, 90(3), 179-191. https://doi.org/10.1007/s00703-004-0094-7
Yuan, D., Zhou, H., & Zhao, X. (2013). Interannual Climate Variability over the Tropical Pacific Ocean Induced by the Indian Ocean Dipole through the Indonesian Throughflow. Journal of Climate, 26(9), 2845-2861. https://doi.org/https://doi.org/10.1175/JCLI-D-12-00117.1
Yuan, Y., & Li, C. (2008). Decadal variability of the IOD-ENSO relationship. Chinese Science Bulletin, 53(11), 1745-1752. https://doi.org/10.1007/s11434-008-0196-6
Zeng, N., Dickinson, R. E., & Zeng, X. (1996). Climatic Impact of Amazon Deforestation—A Mechanistic Model Study. Journal of Climate, 9(4), 859-883. https://doi.org/https://doi.org/10.1175/1520-0442(1996)009<0859:CIOADM>2.0.CO;2
Zeng, Z., Estes, L., Ziegler, A. D., Chen, A., Searchinger, T., Hua, F., Guan, K., Jintrawet, A., & F. Wood, E. (2018). Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nature Geoscience, 11(8), 556-562. https://doi.org/10.1038/s41561-018-0166-9
Zeng, Z., Wang, D., Yang, L., Wu, J., Ziegler, A. D., Liu, M., Ciais, P., Searchinger, T. D., Yang, Z.-L., Chen, D., Chen, A., Li, L. Z. X., Piao, S., Taylor, D., Cai, X., Pan, M., Peng, L., Lin, P., Gower, D., . . . Wood, E. F. (2021). Deforestation-induced warming over tropical mountain regions regulated by elevation. Nature Geoscience, 14(1), 23-29. https://doi.org/10.1038/s41561-020-00666-0
Zhang, H., Henderson-Sellers, A., & McGuffie, K. (1996). Impacts of Tropical Deforestation. Part II: The Role of Large-Scale Dynamics. Journal of Climate, 9(10), 2498-2521. https://doi.org/https://doi.org/10.1175/1520-0442(1996)009<2498:IOTDPI>2.0.CO;2
Zhang, T., Tam, C.-Y., Jiang, X., Yang, S., Lau, N.-C., Chen, J., & Laohalertchai, C. (2019). Roles of land-surface properties and terrains on Maritime Continent rainfall and its seasonal evolution. Climate Dynamics, 53(11), 6681-6697. https://doi.org/10.1007/s00382-019-04951-6
Zhang, W., Wang, Y., Jin, F.-F., Stuecker, M. F., & Turner, A. G. (2015). Impact of different El Niño types on the El Niño/IOD relationship. Geophysical Research Letters, 42(20), 8570-8576. https://doi.org/https://doi.org/10.1002/2015GL065703
Zhao, X., Lu, R., Dong, B., Hong, X., Liu, J., & Sun, J. (2022). Tropical Anomalies Associated with the Interannual Variability of the Cross-Equatorial Flows over the Maritime Continent in Boreal Summer. Journal of Climate, 35(17), 5591-5603. https://doi.org/https://doi.org/10.1175/JCLI-D-21-0764.1
Zheng, Y., Tam, C.-Y., Xu, K., & Collins, M. (2024). Origins of Underestimated Indian Ocean Dipole Skewness in CMIP5/6 Models. Journal of Climate, 37(3), 837-853. https://doi.org/https://doi.org/10.1175/JCLI-D-23-0412.1
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92911-
dc.description.abstract海洋大陸位於暖池,西臨印度洋東接太平洋。因爲海洋大陸特殊的地理位置,陸地降水有著鮮明的年際變化,海洋大陸不同區域的降水年循環也不盡相同;位於熱帶、充足的水氣供應也使得海洋大陸成爲全球最“濕”的地點之一,使之從能量上有機會通過大尺度波動影響中高緯的氣候。本研究始於探索自然氣候變異對海洋大陸當地的降水影響,接著試圖瞭解人爲地表變遷造成當地降水變化後對中高緯氣候的潛在影響。
印度洋偶極子與聖嬰是對海洋大陸水文氣候產生影響的兩個最主要自然氣候變異。從長期平均來看,我們發現,當正相位的印度洋偶極子與聖嬰同時發生時,海洋大陸產生更强的沉降、降水會急劇減少。兩者共同發生時沉降會比僅有印度洋偶極子及聖嬰來得更强,顯示了印度洋偶極子與聖嬰對各自的發展都有加成作用。
而在年際尺度中,海洋大陸秋季的降水變異度在過去一百多年有一定的傾向性,比如在1965年後變化較爲劇烈。這似乎與聖嬰與印度洋偶極子兩者同時發生的次數在1965年後增加有關。聖嬰與印度洋偶極子的兩者關係主要由聖嬰主導,即較强的聖嬰較容易引發印度洋偶極子:聖嬰變異度較大時,兩者容易共同發生。我們也使用氣候模式瞭解全球暖化對聖嬰與印度洋偶極子兩者關係的影響。然而單一氣候模式並非都能恰當模擬聖嬰與印度洋偶極子的兩者關係,即並非所有模式都能模擬强聖嬰往往伴隨強印度洋偶極子的現象。然而從多模式的比較中可以發現,可以模擬出聖嬰變異度較大的模式往往都可以模擬聖嬰與印度洋偶極子的高度相關現象;同時,模擬聖嬰變異度在暖化下增加較大的模式也可模擬出兩者在暖化後更相關。
除了會大幅改變海洋大陸降水的自然氣候變異外,近年來當地持續且加劇的人爲土地利用,比如森林砍伐也成爲改變局地降水的潛在因素。自然氣候變異導致海洋大陸降水改變並影響中高緯氣候,已在之前的研究中有詳盡敘述,但因人爲活動而改變的局地降水對中高緯氣候產生的影響尚未清楚。我們發現,在海洋大陸發生大規模森林砍伐後,地表溫度升高後造成地表的能量平衡重新分配,同時增加局地的降水。降水增加會釋放大量潛熱、加熱附近大氣,同時在高層產生輻散風。輻散風到達副熱帶噴流時產生渦度距平,即所謂的羅士比波。這些羅士比波會沿著副熱帶噴流傳遞到出區,再向北傳遞到阿留申區域,產生阿留申低壓距平。阿留申低壓距平會將水氣與溫度從中低緯度傳送至中高緯,導致在阿留申低壓距平東北方偏暖;而阿留申低壓距平西北方也偏暖,主要是由一系列正回饋作用所導致。由於副熱帶噴流會影響羅士比波的傳遞路徑,而聖嬰又可調控副熱帶噴流位置及强度,我們進一步分析聖嬰的不同相位時,海洋大陸森林砍伐對中高緯的影響。在反聖嬰年中,副熱帶噴流較短且偏西,因此海洋大陸森林砍伐所產生的羅士比波更容易傳至阿留申區域,產生更强的阿留申低壓距平,同時北美洲西北部的升溫更多。在聖嬰年中,則因爲副熱帶噴流較長,羅士比波不容易傳至阿留申低壓區域,阿留申低壓距平加强較弱。通過線性模式的一系列實驗發現,我們所看到的訊號主要受到海洋大陸東邊的地表變遷所引起。
這份研究發現正相位的印度洋偶極子與聖嬰同時發生的頻率最近有所增加,同時也分析了海洋大陸地表植被改變對中高緯氣候潛在的影響,這些發現說明,未來海洋大陸地區因地表植被改變造成的地表異質性可能更容易引發遙相關的反應,提供了一個未來研究的方向。
zh_TW
dc.description.abstractThe Maritime Continent (MC) located in the warm pool region, bordered by the Indian Ocean to the west and the Pacific Ocean to the east. Due to its unique geographical position, the MC experiences distinct interannual variations in precipitation. As one of the wettest places on Earth, situated in the tropics with an abundant water vapor supply, the MC has the potential to influence mid-to-high latitude climates through strong local convection and induced large-scale atmospheric teleconnections. This study initially explores the impact of natural climate variability on local precipitation in the terrestrial MC regions, subsequently aiming to understand the potential effects on mid-to-high latitude climates following deforestation-induced changes in local precipitation.
The Indian Ocean Dipole (IOD) and ENSO are the primary natural variabilities influencing the hydroclimate of the MC. From a long-term average perspective, we found that precipitation over the MC significantly decreases when the positive phases of the IOD (pIOD) and El Niño occur simultaneously (coincident El Niño-pIOD), with enhanced downward motion over the MC regions. The downward motion during coincident El Niño-pIOD years is stronger than the summation of El Niño-only and pIOD-only years, indicating a combined nonlinear effect when El Niño and pIOD occur simultaneously.
At the interannual timescale, the variability of precipitation over the terrestrial MC has increased after 1965, possibly associated with an increased number of coincident El Niño-pIOD events. The relationship between ENSO and the IOD is mainly controlled by the variability of ENSO; that is, stronger ENSO events are more likely to trigger the IOD. When there is greater variability in ENSO, more coincident El Niño-pIOD events occur, leading to increased precipitation variability over the MC. Climate models were used to examine the impacts of global warming on the relationship between ENSO and the IOD. However, not all individual climate models accurately simulate this relationship as shown in observed data. However, from multi-model comparisons, those models that simulate larger ENSO variabilities tend to represent the tight relationship between ENSO and the IOD more accurately. Additionally, models showing a greater increase in ENSO variability under global warming also tend to represent a tight relationship.
In addition to natural climate variability affecting precipitation over the MC, recent anthropogenic activities such as deforestation may also potentially influence precipitation. However, the impacts of these changed local precipitation patterns due to human activities on the climate of mid-to-high latitudes remain uncertain. This study found that deforestation disrupts the surface energy balance, raising surface temperatures and subsequently increasing local precipitation. The increased local precipitation in the MC is accompanied by vast latent heat release in the upper atmosphere. This diabatic heating can generate divergent winds in the upper levels and anomalous vorticity (known as Rossby waves) near the subtropical jet. These Rossby waves propagate zonally along the subtropical jet and subsequently travel meridionally at the exit of the subtropical jet to the Aleutian region, eventually intensifying the Aleutian Low. Then, the anomalous Aleutian Low transports water vapor and warm temperatures from mid-latitudes to higher latitudes, leading to warmer conditions northeast of the anomalous Aleutian Low, while the northwest also experiences warm, which is primarily due to a series of positive feedback mechanisms.
Since the subtropical jet influences the propagation path of Rossby waves, and ENSO can adjust the position and intensity of the subtropical jet, we further analyze the effects of different phases of ENSO on modulating the teleconnection of MC deforestation. During La Niña years, the subtropical jet is relatively shorter and shifts westerly. As a result, the Rossby waves generated by MC deforestation are more likely to propagate to the Aleutian region, intensifying the Aleutian Low and causing robust warming in northwest America. These results contrast during El Niño years. Furthermore, we found that the teleconnection we observed is primarily induced by the eastern part of the MC through a series of experiments using a linear baroclinic model.
This study indicates the increased frequency of coincident El Niño-pIOD events and investigates how land-use changes in the MC influence high-latitude climates and the underlying mechanisms. These findings help identify hotspots for future land-use changes and their teleconnections, providing insights into their local, regional, and remote impacts.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-04T16:09:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-04T16:09:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 ii
Abstract iv
Contents vi
List of Tables ix
List of Figures ix
Supporting publications ix
1. Introduction 1
2. The Increased Frequency of Combined El Niño and Positive IOD Events Since 1965s and Its Impacts on the Maritime Continent Hydroclimate 6
2.1 Background 6
2.2 Data and Methods 9
2.2.1 Reanalysis Datasets and Climate Models 9
2.2.2 The Method of Defined ENSO and IOD Events 10
2.3 Results 11
2.3.1 The Relationship Between Fire, TWSA, and Precipitation 11
2.3.2 The Cause of Reduced Precipitation During ENSO and IOD Events 13
2.3.3 The Relationship Between ENSO and IOD Events at the Interdecadal Timescale 15
2.3.4 Possible Mechanisms Causing the Recent Increase in Coincident El Niño-pIOD Events 17
3. The Remote Response in the Northern Pacific Climate During Winter to Deforestation in the Maritime Continent 21
3.1 Background 21
3.2 Data and Methods 24
3.3 Resluts 28
3.3.1 Local Responses 28
3.3.2 Propagation Mechanism 30
3.3.3 Diverse Atmospheric Responses to Deforestation in the Maritime Continent Over Terrestrial and Oceanic Regions 34
3.3.4 Feedback Mechanisms in High Latitudes Warming 35
4. The Teleconnection Induced by Deforestation in the Maritime Continent is Enhanced During La Niña Year 37
4.1 Background 37
4.2 Data and Methods 40
4.3 Results 43
4.3.1 Similar Local Responses to Deforestation during La Niña and El Niño states 43
4.3.2 Distinct Remote Responses during La Niña and El Niño and Associated Mechanisms 45
4.3.3 Potential Influences of MC’s Deforestation on High-Latitude Temperatures 48
4.3.4 The Diverse Teleconnections from the Western and Eastern Maritime Continent 50
5. Conclusion 54
6. Discussion and Future Work 58
6.1 Discussion about the Relationship Between ENSO and IOD 58
6.2 Discussion on the Teleconnections Induced by Maritime Continent’s Deforestation 61
6.3 Discussion on the Diverse Teleconnections During La Niña and El Niño 63
Reference 65
-
dc.language.isoen-
dc.subject遙相關zh_TW
dc.subject森林砍伐zh_TW
dc.subject羅士比波zh_TW
dc.subject聖嬰zh_TW
dc.subject海洋大陸zh_TW
dc.subject印度洋偶極子zh_TW
dc.subjectTeleconnectionen
dc.subjectMaritime Continenten
dc.subjectENSOen
dc.subjectIndian Ocean Dipoleen
dc.subjectDeforestationen
dc.subjectRossby Waveen
dc.title自然和人爲因素及其交互作用對海洋大陸水文氣候之影響zh_TW
dc.titleImpacts of Natural and Anthropogenic and their Interactions on the Maritime Continent's Hydroclimateen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee梁禹喬;曾于恒;陳維婷;洪志誠;余進義;許晃雄;曾琬鈴;曾開治zh_TW
dc.contributor.oralexamcommitteeYu-Chiao Liang;Yu-Heng Tseng;Wei-Ting Chen;Chi-Cherng Hong;Jin-Yi Yu;Huang-Hsiung Hsu;Wan-Ling Tseng;Kai-Chih Tsengen
dc.subject.keyword海洋大陸,聖嬰,印度洋偶極子,森林砍伐,羅士比波,遙相關,zh_TW
dc.subject.keywordMaritime Continent,ENSO,Indian Ocean Dipole,Deforestation,Rossby Wave,Teleconnection,en
dc.relation.page114-
dc.identifier.doi10.6342/NTU202401342-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-06-26-
dc.contributor.author-college理學院-
dc.contributor.author-dept大氣科學系-
dc.date.embargo-lift2029-06-25-
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
6.08 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved