Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92897
標題: 透過微調技術、對比學習、全面訓練策略和實際評估增進程式合成
Enhancing Program Synthesis through Fine-Tuning Techniques, Contrastive Learning, Comprehensive Training Strategies, and Real-World Evaluation Scenarios
作者: 李威緒
Wei-Hsu Lee
指導教授: 孫紹華
Shao-Hua Sun
關鍵字: 程式合成,程式預訓練模型,參數微調,對比學習,正反樣本,可程式化強化學習,
Program Synthesis,Pretrained Code Models,Fine-tuning,Contrastive Learning,Positive and Negative Samples,Programmatic Reinforcement Learning,
出版年 : 2024
學位: 碩士
摘要: 程式合成基於特定的規格來創建程式,這些規格可以有各種形式。大型語言模型(LLM)由於缺乏訓練資料,在處理領域特定語言(DSL)時存在困難。了解DSL與一般程式語言之間的差異至關重要。我們開發了兩個框架來改進模型對DSL執行和邊緣情況的理解。此外,添加新的神經模塊也可能有幫助。我們利用參數高效微調(PEFT)和CLIP開發了具有增強泛化能力的兩個框架。在某些情況下,設計評估指標可能是必要的。我們的貢獻在於找出最有效的方法來彌合DSL與LLM之間的鴻溝,並通過使用新的評估指標,提供對神經程式合成的新視角。
Program synthesis creates programs based on specific specifications in various modalities. Large language models~(LLMs) struggle with domain-specific language~(DSL) due to a lack of training data. Understanding the differences between DSL and general programming languages is important. Two frameworks have been developed to improve the model''s understanding of DSL execution and corner cases. Adding new neural modules may also help. Two frameworks with enhanced generalization abilities have been developed using parameter-efficient fine-tuning (PEFT) and CLIP. In some cases, designing an evaluation metric may be necessary. Our contribution involves identifying the most effective method for bridging the gap between DSL and LLM and offering a fresh perspective on neural program synthesis through the use of new evaluation metrics.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92897
DOI: 10.6342/NTU202401351
全文授權: 同意授權(全球公開)
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf814.13 kBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved