請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92874完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林增毅 | zh_TW |
| dc.contributor.advisor | Tzeng Yih Lam | en |
| dc.contributor.author | 許致銓 | zh_TW |
| dc.contributor.author | Chih-Chuan Hsu | en |
| dc.date.accessioned | 2024-07-02T16:23:54Z | - |
| dc.date.available | 2024-07-03 | - |
| dc.date.copyright | 2024-07-02 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-06-27 | - |
| dc.identifier.citation | 林銘輝(1983)。水平樣線取樣法測計人工林胸高斷面積之研究。台灣省林業試驗所試驗報告第396號,1-7頁。
陳慧瑜(2020)。運用投影法於球面全景攝影圖建立樹木形數。碩士論文。國立台灣大學森林環境暨資源學研究所,10-19頁。 蕭仕榮(1982)。林木調查方法。臺灣林業,8:4卷,22-28頁。 Kershaw Jr., J. A., Ducey, M. J., Beers, T. W., Husch, B. (2016). Forest Mensuration. 5th ed. John Wiley & Sons Ltd, West Sussex, UK. 103-105, 121-125, 274-293, 361-368. West, P. W. (2015). Tree and Forest Measurement. 3rd ed. Springer International Publishing, Switzerland. 11-15, 109-111. Parker, R. C., Matney, T. G. (1999). Comparison of Optical Dendrometers for Prediction of Standing Tree Volume. Southern Journal of Applied Forestry 23(2), Oklahoma, USA, 100-107. KATAM Technologies AB (2022). Forest inventory using KATAM Forest-User guide.KATAM Technologies AB, 1-16. Rosset, C., Brand, R., Weber, D., Wuillemin, E., Gollut, C., Caillard, I., Fiedler, U. (2015) MOTI–ein Tool für die Waldinventur im Taschenformat. Wald Holz, 96, 45–48. Rosset, C., Brand, R., Caillard, I., Fiedler, U., Gollut, C., Schmocker, A., Weber, D., Wuillemin, E. (2014) MOTI-L’Inventaire Forestier Facilité par le Smartphone. Rapport Final. Projet no 2012.24; Haute école des sciences agronomiques, forestières et alimentaires: Zollikofen, Switzerland. Trestima (2020). Forest Inventory System. User Manual v.1.4, 4-23. Pitkänen, T. P., Räty, M., Hyvönen, P., Korhonen, K. T., & Vauhkonen, J. (2021). Using auxiliary data to rationalize smartphone-based pre-harvest forest mensuration. Forestry: An International Journal of Forest Research, 95(2), 247-260. Latorre, E. G. (2015). Evaluation of a Mobile Phone Application for Sample Plot Measurement in Russia. Department of Forest Sciences at University of Helsinki, Master Thesis, 1-28. Pace, R., Masini, E., Giuliarelli, D., Biagiola, L., Tomao, A., Guidolotti, G., Agrimi, T., Portoghesi, L., Angelis, P. D., Calfapietra, C. (2022). Tree Measurements in the Urban Environment: Insights from Traditional and Digital Field Instruments to Smartphone Applications. Arboriculture & Urban Forestry (AUF), 48(2), 113-123. Tatsumi, S., Yamaguchi, K., Furuya, N. (2023). ForestScanner: A mobile application for measuring and mapping trees with LiDAR-equipped iPhone and iPad. Methods in Ecology and Evolution, 14(7), 1603-1609. Laser Technology, Inc. (2012). Criterion RD 1000 User’s Manual. 3rd ed. Laser Technology, Inc. USA. 3-19. Roberge, J. M., Fries, C., Normark, E., Mårald, E., Sténs, A., Sandström, C., Sonesson, J., Appelqvist, C., Lundmark, T. (2020) Forest management in Sweden Current practice and historical background. Skogsstyrelsen, 8. Bell, J. F., Bitterlich, W., Iles, K., Ruthner, G. (2018). Spiegel Relaskop American Scale Manual. Silvanus, Kirchdorf, Austria. 1-23. Forest Suppliers, Inc. (2013). Instructions of Jim-Gem Wheeler Pentaprism Caliper. Forest Supplier, Inc. West Rankin Street Jackson, USA. 1-2. Kangas, A., Maltamo, M. (2006). Forest Inventory: Methodology and Applications, Springer, Dordrecht, The Netherlands. 55-58. Varjo, J., Henttonen, H., Lappi, J., Heikkonen, J., Juujärvi, J. (2006). Digital Horizontal Tree Measurements for Forest Inventory, Finnish Forest Research Institute, Helsinki, Finland. 10. Aguilera, M., Villasante, A., Fernandez, C. (2021). Accuracy in estimating basal areas for forest inventories: Comparison of android-based virtual relascope and spiegel relaskop. Canadian Journal of Forest Research, 51(1), 132-137. Molinier, M., Hame, T., Toivanen, T., Andersson, K., Mutanen, T. (2014). Relasphone–Mobile phone and interactive applications to collect ground reference biomass data for satellite image analysis. International Geoscience and Remote Sensing Symposium (IGARSS). 836-839. Molinier, M., López-Sánchez, C. A., Toivanen, T., Korpela, I., Corral-Rivas, J. J., Tergujeff, R., Häme, T. (2016). Relasphone-mobile and participative in situ forest biomass measurements supporting satellite image mapping. Remote Sensing, 8-10. Song, C., Yang, B., Zhang, L., Wu, D. (2021). A handheld device for measuring the diameter at breast height of individual trees using laser ranging and deep-learning based image recognition. Plant Methods, 17(1), 1-15. Ucar, Z., Değermenci, A. S., Zengin, H., Bettinger, P. (2022). Evaluating the Accuracy of Remote Dendrometers in Tree Diameter Measurements at Breast Height. Croatian Journal of Forest Engineering, 43(1), 185-197. Ulak, S., Ghimire, K., Gautam, R. Bhandari, S. K., Poudel, K. P., Timilsina, Y. P., Pradhan, D., Subedi, T. (2022) Predicting the upper stem diameters and volume of a tropical dominant tree species. Springer, J. For. Res. 33, 1725-1737. Aleixo Da Silva, J. A., Borders, B. E., Brister, G. H. (1994) Estimating tree volume using a new form factor. The Commonwealth Forestry Review, 1994, Vol. 73, No. 1, 14-17. Sabatia, C. O. (2016) Use of upper stem diameters in a polynomial taper equation for New Zealand radiata pine: an evaluation. New Zealand Journal of Forestry Science 46(14), 2. Larsen, D. R. (2017) Simple Taper: Taper equations for the field forester. Proceedings of the 20th Central Hardwood Forest Conference. 265-266. Ashley, M. D., Roger, R. E. (1969) Tree Heights and Upper Stem Diameters. Purdue University. 136-145. Nash, A. J. (1973) An instrument for measuring upper stem diameters in tropical hardwood forests. The Commonwealth Forestry Review, Vol. 52, No. 2 (152), 147-152. Täll, K. (2020) Accuracy of mobile forest inventory application KatamTM Forest – Evaluation of accuracy in different forest types and comparison to conventional inventory methods. Swedish University of Agricultural Sciences – Southern Swedish Forest Research Centre, Master Thesis, No. 333, Vastaranta, M., Latorre, E. G., Luoma, V., Saarinen, N., Holopainen, M., & Hyyppä, J. (2015). Evaluation of a Smartphone App for Forest Sample Plot Measurements. Forests, 6(4), 1179-1194. Ficko, A. (2020). Bayesian Evaluation of Smartphone Applications for Forest Inventories in Small Forest Holdings. Forests, 11(11), 1-16. Sandim, A., Amaro, M., Silva, M. E., Cunha, J., Morais, S., Marques, A., Ferreira, A., Lousada, J. L., Fonseca, T. (2023). New Technologies for Expedited Forest Inventory Using Smartphone Applications. Forests, 14(8), 2-10. Banyard, S. G. (1975). A COMPARISON BETWEEN POINT SAMPLING AND PLOT SAMPLING IN TROPICAL RAIN FOREST BASED ON A CONCEBT OF THE EQUIVALENT RELASCOPE PLOT SIZE. The Commonwealth Forestry Review, 54(3/4 (161-2)), 312-320. Liu, J., Yu, J. (2011). Research on Development of Android Applications. Paper presented at the Proceedings of the 2011 4th International Conference on Intelligent Networks and Intelligent Systems. 69-72. Muthuswamy, S., Ganapathi, P., Sathyanarayanan, S. (2013). A Survey on Mobile Application Development using Android OS. IEEE – International Conference on Research and Development Prospects on Engineering and Technology (ICRDPET 2013). 269-274. Ardito, L., Coppola, R., Malnati, G., Torchiano, M. (2020). Effectiveness of Kotlin vs. Java in android app development tasks. Information and Software Technology, 127, 106374. Putranto, B. P. D., Saptoto, R., Jakaria, O. C., Andriyani, W. (2020). A Comparative Study of Java and Kotlin for Android Mobile Application Development. Paper presented at the 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI). 383-386. Reto, M. (2012). Professional Android 4 Application Development. Indianapolis: John Wiley & Sons. 1-20. Ndwaru, L. (2014). Introduction to Android ART; The next generation of Android Runtime. Department of Computer Science, Egerton University. 1-7. Blischak J., D., Davenport E., R., Wilson G. (2016). A Quick Introduction to Version Control with Git and GitHub. PLoS Comput Biol. 12(1). Beckman, M. D., Çetinkaya-Rundel, M., Horton, N. J., Rundel, C. W., Sullivan, A. J., Tackett, M. (2021). Implementing Version Control with Git and GitHub as a Learning Objective in Statistics and Data Science Courses. Journal of Statistics and Data Science Education, 29 (sup1), 1-9. Kouraklis, J. (2016). MVVM as Design Pattern. MVVM in Delphi. 1-12. Sun, W., Chen, H., Yu, W. (2017). The Exploration and Practice of MVVM Pattern on Android Platform. 4th International Conference on Machinery, Materials and Information Technology Applications (ICMMITA 2016), Advances in Computer Science Research, volume 71, 1116-1122. Aljamea, M., Alkandari, M., A. (2018). MMVMi: A Validation Model for MVC and MVVM Design Patterns in iOS Applications. Roy, A. Shekhar., Karanpuria, Rashi. (2018). Kotlin Programming Cookbook: Explore more than 100 recipes that show how to build robust mobile and web applications with Kotlin, Spring Boot, and Android. Packt Publishing. 126-144. Cleveland, W. S. (1979). Robust Locally Weighted Regression and Smoothing Scatterplots. Journal of the American Statistical Association, 74(368), 829-836. Trexler, J. C., Travis, J. (1993). Nontraditional Regression Analyses. Ecology, 74(6), 1629-1637. Ekpar, F., Yoneda, M., Hase, H. (2003). Correcting Distortions in Panoramic Images Using Constructive Neural Networks. International Journal of Neural Systems, 13(04), 239-250. Deskis OÜ. (2014). Bitterlich relascope (version 1.4) [Smartphone Application]. Google Play. https://play.google.com/store/apps/details?id=ee.deskis.adnroid.relascope&hl=en&gl=US KATAM Technologies AB (2023). KATAM Forest: Decision Support (version 2.33) [Smartphone Application]. Google Play. https://play.google.com/store/apps/details?id=katam.com.datarecorder&hl=en&gl=US Trestima (2023). TRESTIMA [Smartphone Application]. Google Play. https://play.google.com/store/apps/details?id=com.trestima.androidapp&hl=en&gl=US BFH-HAFL Zollikofen (2018). MOTI (version 1.2.0) [Smartphone Application]. Google Play. https://play.google.com/store/apps/details?id=ch.bfh.moti&hl=en&gl=US Forest Monitoring Tools (2022). Basal Area (version 2.6) [Smartphone Application]. Google Play. https://play.google.com/store/apps/details?id=com.forest.basalarea&hl=en&gl=US Arboreal AB (2021). Arboreal (version 1.5.0) [Smartphone Application]. Google Play. https://play.google.com/store/apps/details?id=se.arboreal.height&hl=en&gl=US Forestry Suppliers, Inc (2023). Spiegel Relaskop®. Retrieved from https://www.forestry-suppliers.com/p/43850/13791/spiegel-relaskop. Forestry Suppliers, Inc (2023). Jim-Gem® Wheeler Pentaprism Caliper. Retrieved from https://www.forestry-suppliers.com/p/59702/13851/jim-gem-wheeler-pentaprism-caliper?stext=Wheeler+Pentaprism. BIOWEB Global (2023). Criterion RD 1000 Electronic BAF-Scope Dendrometer. Retrieved from https://global.bioweb.co/products/criterion-rd-1000-electronic-baf-scope-dendrometer. Google (2023). Android Studio. Retrieved from https://developer.android.com/studio/index.html. JetBrains (2023). Kotlin. Retrieved from https://kotlinlang.org/ GitHub, Inc. (2023). GitHub Docs. Retrieved from https://docs.github.com/en/get-started/start-your-journey/hello-world | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92874 | - |
| dc.description.abstract | 為降低水平樣點取樣法與林木上部直徑測量的儀器成本,並於地勢陡峭之臺灣森林進行坡度校正時能有更便捷與準確之儀器,本研究開發手機軟體,將傳統儀器Relaskop之功能以應用程式(Application, APP)實現。研究先瞭解常見儀器於水平樣點取樣法與林木上部直徑測量之原理、功能與優缺點,將所用之幾何方法轉換成數學公式,亦比較市面上森林測計APP之功能與優缺點,以及是否附有坡度校正之功能。接著以Kotlin程式語言進行Android作業系統之APP開發,將數學公式轉為程式碼,開發介面與物件導向程式,將水平樣點取樣法之胸高斷面積指數(Basal Area Factor, BAF)轉換為手機像素,提供坡度與俯仰角校正,確保BAF於不同俯仰角之正確性,實現以手機APP進行水平樣點取樣法與林木上部直徑測量之功能。最後本研究比較所開發之APP於不同手機硬體設備之功能性,選用兩支不同硬體規格之手機(Samsung A22 5G及Redmi7),以傳統Angle Gauge儀器為標準,分別於平地30棵樣樹與坡地15棵樣樹進行BAF為2、4、6、8、10、12、14、16、18、20之實測,分析邊界距離(Limiting Distance, LD)之測量值與理論值,以比較APP於不同手機與傳統儀器Angle Gauge之準確度,特別是在手機前鏡頭解析度與螢幕解析度不同時對APP表現之影響。
分析結果發現,在平地測試中,APP於Samsung手機之平均誤差為-4% ~ -5%,於Redmi手機之平均誤差為-3% ~ -5%,而Angle Gauge之平均誤差則為-1% ~ 6.5%;坡地測試中,APP於Samsung手機之平均誤差為-5% ~ -6%,於Redmi手機之平均誤差為-4% ~ -5%,而Angle Gauge之平均誤差則為1.5% ~ -2.5%。由實驗結果推論,手機APP於不同硬體之準確度相似,但Angle Gauge之準確度仍較手機APP高。誤差分佈分析結果顯示手機APP之量測精度較高,Angle Gauge之量測結果則有較多變異。因此本研究所開發之手機APP具有良好之準確度,雖平均誤差較傳統儀器高,但具有較佳之量測精度,且不易受硬體規格影響,具有取代傳統高成本儀器,成為新型態森林測計工具之潛力。 | zh_TW |
| dc.description.abstract | To reduce the cost associated with Horizontal Point Sampling (HPS) equipment and upper-stem diameter measurements, and to enhance measurement accuracy in Taiwan’s steep terrains by slope correction, this research develops a smartphone application (APP) that emulates the functions of the classical Relaskop instrument and includes key ability to correct for slope.
Firstly, the research conducts a comparative analysis of various equipment types for HPS and upper-stem diameter measurements to grasp their principles, functions, and advantages and disadvantages, translating the principles into mathematical formulas as well as developing advanced geometric methods. Subsequently, the research assesses different forest mensuration applications available on Google Play, examining whether they offer slope correction functionality. Furthermore, the research employs the Kotlin, an object-oriented programming language, to develop an Android smartphone APP. This APP calculates the relative angle pixels of Basal Area Factor (BAF) captured by the smartphone camera and employs geometric method to measure upper-stem diameter. To ensure the correctness of the BAF under different slopes, the APP utilizes the mathematical formulas to conduct slope correction. To evaluate the general performance of this smartphone APP across different hardware devices, the research compares its accuracy and precision on Samsung A22 5G and Redmi7 with that of the traditional equipment, the Angle Gauge. The study evaluates the APP using BAF values ranging from 2 to 20, analyzing 30 sample trees on a flat terrain plot and 15 on a steep terrain plot. The research analyzes the error between the measured Limiting Distance and the theoretical Limiting Distance to compare the accuracy of the APP on different smartphones and the Angle Gauge. The experiment results indicate that, for flat terrain plots, the App on Samsung and Redmi smartphones yields mean errors ranging from -4% to -5% and -3% to -5%, respectively, and the Angle Gauge exhibits errors ranging from -1% to 6.5%, indicating greater variability. Similarly, for steep terrain plots, the smartphone APP on Samsung and Redmi devices shows mean errors of -5% to -6% and -4% to -5%, respectively, while the Angle Gauge demonstrates errors from 1.5% to -2.5%. From these results, the APP on smartphones has similar accuracy across different devices, although the Angle Gauge has a higher accuracy than the APP. The APP has a higher measurement precision, while the results of the Angle Gauge are more variable. Based on the above, the research concludes that the APP have a fair accuracy. Although the mean error of the APP is higher than the Angle Gauge, the APP shows a better precision, and the performance would not be affected by the hardware specifications, demonstrating the potential to replace traditional high-cost instruments as new type of forestry measurement tool. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-02T16:23:54Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-02T16:23:54Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
謝辭 ii 中文摘要 iii Abstract iv 第一章 序論Introduction 1 第二章 文獻回顧Literature Review 3 2.1 樣區設計方法(Plot Design Methods) 3 2.2 林木上部直徑(Upper-Stem Diameter) 11 2.3 林木照片數值演算 (Photographic Method) 15 2.4 市面手機應用程式比較(Mobile Application Comparisons) 16 第三章 材料與方法Materials and Methods 22 3.1 試驗材料(Materials) 22 3.2 數學模式開發(Development of Mathematical Models) 27 3.3 軟體開發 (APP Development) 31 3.4 軟體測試之實驗設計(Experiment Design for APP Testing) 32 3.5 誤差分析(Error Analysis) 34 第四章 結果Results 37 4.1 手機APP功能(Application Functions) 37 4.2 實驗測試結果(Experimental Testing Result) 39 第五章 討論Discussions 49 5.1 手機Android APP軟體開發(Android Application Development) 49 5.2 誤差原因(Causes of Error) 50 5.3 未來發展(Future Works) 52 第六章 結論Conclusion 53 參考文獻Reference 54 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 水平樣點取樣法 | zh_TW |
| dc.subject | 坡度校正 | zh_TW |
| dc.subject | Android APP | zh_TW |
| dc.subject | Kotlin | zh_TW |
| dc.subject | 手機軟體開發 | zh_TW |
| dc.subject | 胸高斷面積指數 | zh_TW |
| dc.subject | 林木上部直徑 | zh_TW |
| dc.subject | Android APP | en |
| dc.subject | Horizontal Point Sampling | en |
| dc.subject | Slope Correction | en |
| dc.subject | Mobile Application Development | en |
| dc.subject | Basal Area Factor | en |
| dc.subject | Upper Stem Diameter | en |
| dc.subject | Kotlin | en |
| dc.title | 水平樣點取樣及林木上部直徑測量之手機軟體開發 | zh_TW |
| dc.title | Development of Smartphone Application for Horizontal Point Sampling and Upper Stem Diameter Measurement | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 鄭舒婷 | zh_TW |
| dc.contributor.coadvisor | Su-Ting Cheng | en |
| dc.contributor.oralexamcommittee | 王介鼎;彭炳勳 | zh_TW |
| dc.contributor.oralexamcommittee | Chieh-Ting Wang;Ping-Hsun Peng | en |
| dc.subject.keyword | 手機軟體開發,水平樣點取樣法,胸高斷面積指數,林木上部直徑,坡度校正,Android APP,Kotlin, | zh_TW |
| dc.subject.keyword | Horizontal Point Sampling,Mobile Application Development,Slope Correction,Android APP,Kotlin,Upper Stem Diameter,Basal Area Factor, | en |
| dc.relation.page | 61 | - |
| dc.identifier.doi | 10.6342/NTU202401367 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-06-28 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 森林環境暨資源學系 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 2.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
