Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 會計學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92872
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蔡彥卿zh_TW
dc.contributor.advisorYann-Ching Tsaien
dc.contributor.author魏靖軒zh_TW
dc.contributor.authorJing-Xuan Weien
dc.date.accessioned2024-07-02T16:23:20Z-
dc.date.available2024-07-03-
dc.date.copyright2024-07-02-
dc.date.issued2024-
dc.date.submitted2024-06-26-
dc.identifier.citationAbraham, R., Samad, M. E., Bakhach, A. M., El-Chaarani, H., Sardouk, A., Nemar, S. E., & Jaber, D. (2022). Forecasting a stock trend using genetic algorithm and random forest. Journal of Risk and Financial Management, 15(5), 188.
Breiman, L. (1996). Bagging predictors. Machine learning, 24, 123-140.
Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining,
Eugene, F., & French, K. (1992). The cross-section of expected stock returns. Journal of Finance, 47(2), 427-465.
Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. icml,
Fukunaga, K. (2013). Introduction to statistical pattern recognition. Elsevier.
Gumelar, A. B., Setyorini, H., Adi, D. P., Nilowardono, S., Widodo, A., Wibowo, A. T., Sulistyono, M. T., & Christine, E. (2020). Boosting the accuracy of stock market prediction using xgboost and long short-term memory. 2020 International Seminar on Application for Technology of Information and Communication (iSemantic),
Hinton, G. E. (2007). Learning multiple layers of representation. Trends in cognitive sciences, 11(10), 428-434.
Ho, T. K. (1995). Random decision forests. Proceedings of 3rd international conference on document analysis and recognition,
Mullainathan, S., & Spiess, J. (2017). Machine learning: an applied econometric approach. Journal of Economic Perspectives, 31(2), 87-106.
Puspitaningtyas, Z. (2017). Is financial performance reflected in stock prices? 2nd International Conference on Accounting, Management, and Economics 2017 (ICAME 2017),
Sharpe, W. F., Alexander, G. J., & Bailey, J. W. (1999). Investments. Prentice Hall.
Shekar, B., & Dagnew, G. (2019). Grid search-based hyperparameter tuning and classification of microarray cancer data. 2019 second international conference on advanced computational and communication paradigms (ICACCP),
Singh, R., & Srivastava, S. (2017). Stock prediction using deep learning. Multimedia Tools and Applications, 76, 18569-18584.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
Wang, C., Chen, Y., Zhang, S., & Zhang, Q. (2022). Stock market index prediction using deep Transformer model. Expert Systems with Applications, 208, 118128.
王官品. (1986). 上市公司每月盈收公告與股價變動關係之研究 國立中興大學]. 臺灣博碩士論文知識加值系統. 台中市. https://hdl.handle.net/11296/2eg4xp
王美齡. (2015). 香港、新加坡及美國另類上市制度之探討. 證券服務, 637期, 49-59.
王朝正. (2007). 母公司月營收與合併月營收之資訊內涵與盈餘預測能力之比較 國立臺北大學]. 臺灣博碩士論文知識加值系統. 新北市. https://hdl.handle.net/11296/en5w49
何秀芳. (2000). 再論月營收公告之資訊內涵 國立臺灣大學]. 臺灣博碩士論文知識加值系統. 台北市. https://hdl.handle.net/11296/s926mu
吳幸姬, & 李顯儀. (2006). 產業月營收變化與股價報酬的關聯性之研究. 管理科學研究, 3(2), 61-74.
巫建廷. (2014). 台灣上市櫃公司月營收之資訊內涵與交易策略 國立中山大學]. 臺灣博碩士論文知識加值系統. 高雄市. https://hdl.handle.net/11296/vtbj9v
蔡彥卿, & 楊孟萍. (2008). 月營收與股價關聯性-台灣上市電子業公司個別探討. 會計研究月刊(275), 38-49.
簡雪芳. (1998). 月營收公告資訊內涵之相關研究 國立臺灣大學]. 臺灣博碩士論文知識加值系統. 台北市. https://hdl.handle.net/11296/c6pmny
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92872-
dc.description.abstract本論文使用公司過去發布之月營收資訊,搭配兩種預測模式與兩種資料特徵前處理方法,並分別使用隨機森林模型、極限梯度提升模型、多層感知機模型、Transformer 模型,並結合迴歸器與分類器,用於預測下一個月的月營收。此外,本論文使用預測之月營收與基準相比作為預測消息好壞之基礎,建立不同的投資組合,實證套利之可能性。
經過模型和結果實證,即使在有新公報與疫情影響之下,本論文得到以下三個結論:第一,證明可將機器學習與深度學習應用於預測未來月營收,在迴歸器的部分,機器學習模型預測能力較深度學習模型佳,在分類器的部分則是極限梯度提升模營與多層感知機預測能力較佳。第二,預測型態與月營收前處理對於機器學習與深度學習模型預測能力皆有影響,其中又以月對月預測搭配原始月營收資料,預測偏誤較大,而經過去趨勢化之月營收資料,可以消除季節性因素對於模型預測能力之影響。最後,本論文發現在假設市場完美、沒有交易成本與摩擦之情況下,在迴歸器中,機器學習與深度學習搭配去趨勢化之月營收皆能產生相對較高且穩定之正向套利報酬,其中僅少數年份報酬為負,並且在四個模型中,以多層感知機套利結果最為穩定。在分類模型中,本論文發現極限梯度提升與多層感知機,可以得到預測準確度高且套利報酬穩定之結果。
zh_TW
dc.description.abstractThis paper uses historical monthly revenue information released by companies, combined with two forecasting patterns and two feature preprocessing methods, and employs four machine learning models. It integrates regressors and classifiers to predict the next month's revenue. Additionally, this paper uses the predicted monthly revenue compared to a benchmark as the basis for determining the message of monthly revenue released is positive or negative and establishes different investment portfolios to empirically test the possibility of arbitrage.
Based on the models and empirical results, despite the impact of new International Accounting Standard and COVID-19, this paper draws the following three conclusions: First, it is demonstrated that machine learning and deep learning can be applied to forecast future monthly revenue. In terms of regressors, machine learning models have better predictive ability than deep learning models, while for classifiers, eXtreme Gradient Boosting and Multilayer Perceptron show better predictive ability. Second, forecasting patterns and monthly revenue preprocessing impact the predictive ability of both machine learning and deep learning models. Specifically, month-to-month forecasting pattern with raw monthly revenue data leads to larger prediction biases, whereas detrended monthly revenue data can eliminate the influence of seasonal factors on the model's predictive ability. Finally, this paper finds that under the assumption of a perfect market with no transaction costs or frictions, in the case of regressors, both machine learning and deep learning models combined with detrended monthly revenue data can generate relatively high and stable positive arbitrage returns, with only a few years showing negative returns. Among the four models, the Multilayer Perceptron yields the most stable arbitrage results. In the case of classifiers, this paper finds that Extreme Gradient Boosting and Multilayer Perceptron achieve high prediction accuracy and stable arbitrage returns.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-02T16:23:20Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-02T16:23:20Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 i
謝辭 ii
中文摘要 iii
英文摘要 iv
圖 次 vii
表 次 x
第一章 緒論 1
第一節 研究動機與目標 1
第二節 研究架構與流程 2
第二章 文獻回顧 3
第一節 未預期報酬與月營收資訊內涵 3
第二節 機器學習與深度學習及其方法 4
第三章 研究與實證方法 7
第一節 資料應變數與自變數 7
第二節 資料樣本選取 9
第三節 資料特徵前處理方式 10
第四節 模型的建立與評估方法 12
第五節 機器學習與深度學習模型之調參方法 15
第六節 套利模型介紹 18
第四章 結果分析 22
第一節 探討原始月營收資料與去趨勢化月營收之差異 22
第二節 探討不同資料結構下對於預測結果之差異 28
第三節 各模型下套利之實證 32
第五章 結論與建議 34
第一節 研究結論 34
第二節 研究限制 34
第三節 研究建議 35
參考文獻 36
附錄 39
-
dc.language.isozh_TW-
dc.subject月營收預測zh_TW
dc.subject機器學習zh_TW
dc.subject深度學習zh_TW
dc.subject套利zh_TW
dc.subject投資策略zh_TW
dc.subjectMachine Learningen
dc.subjectMonthly Revenue Forecastingen
dc.subjectInvestment Startegiesen
dc.subjectArbitrageen
dc.subjectDeep Learningen
dc.title透過機器學習與深度學習預測月營收並形成套利投資組合zh_TW
dc.titleForecasting Monthly Revenue and Forming Arbitrage Investment Portfolios Using Machine Learning and Deep Learningen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor劉心才zh_TW
dc.contributor.coadvisorHsin-Tsai Liuen
dc.contributor.oralexamcommittee李淑華;簡雪芳zh_TW
dc.contributor.oralexamcommitteeShu-Hua Lee;Hsueh-Fang Chienen
dc.subject.keyword月營收預測,機器學習,深度學習,套利,投資策略,zh_TW
dc.subject.keywordMonthly Revenue Forecasting,Machine Learning,Deep Learning,Arbitrage,Investment Startegies,en
dc.relation.page54-
dc.identifier.doi10.6342/NTU202401346-
dc.rights.note未授權-
dc.date.accepted2024-06-26-
dc.contributor.author-college管理學院-
dc.contributor.author-dept會計學系-
Appears in Collections:會計學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
1.16 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved