Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92865
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳榮凱zh_TW
dc.contributor.advisorJung-Kai Chenen
dc.contributor.author陳毅鴻zh_TW
dc.contributor.authorYi-Hung Chenen
dc.date.accessioned2024-07-02T16:21:20Z-
dc.date.available2024-07-03-
dc.date.copyright2024-07-02-
dc.date.issued2024-
dc.date.submitted2024-06-27-
dc.identifier.citation[1] L. Braun. The local fundamental group of a kawamata log terminal singularity. Invet. Math., 226, 2020.
[2] L. Braun, S. Filipazzi, J. Moraga, and R. Svaldi. The jordan property for local fundamental groups. Geometry and Topology, 26:283 – 319, 2022.
[3] J. Chen. Explicit resolution of three dimensional terminal singularities. Adv. Stud. Pure Math., 70:323 – 360, 10 2016.
[4] D. A. Cox., J. B. Little, and H. K. Schenck. Toric Varieties. Graduate studies in mathematics. American Mathematical Soc., 2011.
[5] S. Cutkosky. Elementary contractions of Gorenstein threefolds. Mathematische Annalen, 280(3):521–526, 1988.
[6] A. Dimca. Singularities and Topology of Hypersurfaces. 08 2014.
[7] A. H. Durfee. Neighborhoods of algebraic sets. Transactions of the American Mathematical Society, 276:517 – 530, 1983.
[8] W. Fulton. Intersection theory. Springer New York, second edition, 1998.
[9] R. Gurjar and D.-Q. Zhang. π1 of smooth points of a log del pezzo surface is finite: I. J. Math. Sci. Univ. Tokyo, 1, 01 1994.
[10] A. Hatcher. Algebraic Topology. Cambridge University Press, 2002.
[11] T. Hayakawa. Blowing ups of 3-dimensional terminal singularities. Publications of the Research Institute for Mathematical Sciences, 35:423 – 456, 1999.
[12] T. Hayakawa. Blowing ups of 3-dimensional terminal singularities, II. Publications of the Research Institute for Mathematical Sciences, 36:515 – 570, 11 2000.
[13] T. Hayakawa. Divisorial contractions to cDV points. PhD thesis, Kanazawa University, 2017.
[14] M. Kapovich and J. Kollár. Fundamental groups of links of isolated singularities. Journal of the American Mathematical Society, 27, 09 2011.
[15] M. Kawakita. Three-fold divisorial contractions to singularities of higher indices. Duke Math. J., 130(1):57–126, 2005.
[16] J. Kollár. New examples of terminal and log canonical singularities. arXiv Preprint, 07 2011.
[17] J. Moraga. On termination of flips and fundamental groups, 09 2021.
[18] D. Mumford. The topology of normal singularities of an algebraic surface and a criterion for simplicity. Publications Mathématiques de l’Inst. Hautes Sci., 9:5–22, 1961.
[19] Z. Tian and C. Xu. Finiteness of fundamental groups. Compositio Mathematica, 153(2):257–273, Feb. 2017.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92865-
dc.description.abstract這篇論文旨在研究三維奇異點的同調群。我們使用相對同調群和長正和序列來計算第一同調群。我們發現,同調群可以通過一些曲線和除子的交點數來計算。我們期望這個方法可以推廣到高維度。zh_TW
dc.description.abstractThis note aims to investigate the homology groups of threefold singularities using the relative homology groups and long exact sequences to compute the first homology groups. We find that the first homology groups can be computed by the intersection numbers of some curves and divisors. We expect that this method can be applied to higher dimensions.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-02T16:21:20Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-02T16:21:20Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 iii
摘要v
Abstract vii
Contents ix
Chapter 1 Introduction 1
Chapter 2 Preliminary 5
2.0.1 Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.0.2 Fundamental Groups . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.0.3 Toric Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chapter 3 Surfaces 13
Chapter 4 Threefolds 19
Chapter 5 Discussion 29
References 31
-
dc.language.isoen-
dc.title奇異點的同調群與基本群zh_TW
dc.titleHomology Groups and Fundamental Groups of Singularitiesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林學庸;賴青瑞;陳俊成zh_TW
dc.contributor.oralexamcommitteeHsueh-Yung Lai;Ching-Jui Lai;Jiun-Cheng Chenen
dc.subject.keyword奇異點,同調群,基本群,雙有理幾何,代數幾何,zh_TW
dc.subject.keywordSingularities,Homology Groups,Fundamental Groups,Birational Geometry,Algebraic Geometry,en
dc.relation.page32-
dc.identifier.doi10.6342/NTU202401353-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-06-28-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
871.51 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved