請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92848完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 方俊民 | zh_TW |
| dc.contributor.advisor | Jim-Min Fang | en |
| dc.contributor.author | 陳偉碩 | zh_TW |
| dc.contributor.author | Wei-Shuo Chen | en |
| dc.date.accessioned | 2024-07-02T16:16:26Z | - |
| dc.date.available | 2024-07-03 | - |
| dc.date.copyright | 2024-07-02 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-06-24 | - |
| dc.identifier.citation | 1.Myoclinic. (2019). retrieved from https://www.mayoclinic.org/diseases-conditions/lung-cancer/symptoms-causes/syc-20374620 (August 20, 2019)
2.Gridelli, C.; Rossi, A.; Carbone, D. P.; Guarize, J.; Karachaliou, N.; Mok, T.; Petrella, F.; Spaggiari, L.; Rosell, R., Non-small-cell lung cancer. Nat. Rev. Dis. Primers 2015, 1:15009. 3.Herbest, R. S.; Morgenstern, D.; Boshoff, C., The biology and management of non-small cell lung cancer. Nature 2018, 553, 446-454. 4.Tabernero, J., The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agent. Mol. Cancer Res. 2007, 5(3), 203-220. 5.Wikipedia. (2019). retrieved from https://en.wikipedia.org/wiki/Microtubule (August 18, 2019) 6.Horio, T.; Murata, T., The role of dynamic instability in microtubule organization. Front Plant Sci. 2014, 5:511. 7.Waterman-Storer, C. M.; Salmon, E. D., Microtubule dynamics: treadmilling comes around again. Current Biology 1997, 7(6), 369-372. 8.Kuo, T. C.; Li, L. W.; Pan, S. H.; Fang, J. M.; Liu, J. H.; Cheng, T. J.; Wang, C. J.; Hung, P. F.; Chen, H. Y.; Hong, T. M.; Hsu, Y. L.; Wong, C. H.; Yang, P. C., Purine-type compounds induce microtubule fragmentation and lung cancer cell death through interaction with katanin. J. Med. Chem. 2016, 59(18), 8521–8534. 9.Ulrich, H.D.; Walden, H., Ubiquitin signaling in DNA replication and repair. Nat. Rev. Mol. Cell Biol. 2010, 11, 479–489. 10.Komander, D.; Rape, M., The ubiquitin code. Annu. Rev. Biochem. 2012, 81, 203–229. 11.Deshaies, R. J.; Joazeiro, C. A., RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 2009, 78, 399–434. 12.Budhidarmo, R.; Nakatani, Y.; Day, C. L., RINGs hold the key to ubiquitin transfer. Trends Biochem. Sci. 2012, 37, 58–65. 13.Wenzel, D. M.; Klevit, R. E., Following Ariadne''s thread: a new perspective on RBR ubiquitin ligases. BMC Biol. 2012, 10:24. 14.Lavanya, V.; Mohamed. Adil A. A.; Neesar, A.; Arun, K. R.; Shazia, J., Small molecule inhibitors as emerging cancer therapeutics. Integr. Cancer Sci. Ther. 2014, 1(3), 39-46. 15.Toure, M.; Crews, C. M., Small-molecule PROTACS: new approaches to protein degradation. Angew. Chem. Int. Ed. 2016, 55, 1966–1973. 16.Leiser, D.; Pochon, B.; Blank-Liss, W.; Francica, P.; Glück, A. A.; Aebersold, D.M., Targeting of the MET receptor tyrosine kinase by small molecule inhibitors leads to MET accumulation by impairing the receptor downregulation. FEBS Lett. 2014, 588, 653–658. 17.Vangamudi, B.; Paul, T.A.; Shah, P.K.; Kost-Alimova, M.; Nottebaum, L.; Shi, X., The SMARCA2/4 ATPase domain surpasses the bromodomain as a drug target in SWI/SNF-mutant cancers: insights from cDNA rescue and PFI-3 inhibitor studies. Cancer Res. 2015, 75, 3865–3878. 18.Sakamoto, K. M.; Kim, K. B.; Kumagai, A.; Mercurio, F.; Crews, C. M.; Deshaies, R. J., PROTACs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA 2001, 98, 8554–8559. 19.Merck KGaA, retrived from https://www.sigmaaldrich.com/technical-documents/articles/technology-spotlights/partial-protacs.html (August 20, 2019) 20.Schneekloth, Jr., J. S.; Fonseca, F. N.; Koldobskiy, M.; Mandal, A.; Deshaies, R.; Sakamoto, K.; Crews, C. M., Chemical genetic control of protein levels: selective in vivo targeted degradation. J. Am. Chem. Soc. 2004, 126, 3748–3754. 21.Zhou, B.; Hu, J.; Xu, F.; Chen, Z.; Bai, L.; Fernandez-Salas E.; Lin M.; Liu L.; Yang CY.; Zhao Y.; McEachern D.; Przybranowski S.; Wen B.; Sun D.; Wang S., Discovery of a small-molecule degrader of bromodomain and extra-terminal (BET) proteins with picomolar cellular potencies and capable of achieving tumor regression. J. Med. Chem. 2018, 61(2), 462-481. 22.Belcher, B. P.; Ward, C. C.; Nomura, D. K., Ligandability of E3 ligases for targeted protein degradation applications. Biochemistry 2023, 62(3), 588. 23.Wang, X.; Feng, S.; Fan, J.; Li, X.; Wen, Q.; Luo, N., New strategy for renal fibrosis: targeting Smad3 proteins for ubiquitination and degradation. Biochem. Pharmacol. 2016, 116, 200–209. 24.Zengerle, M.; Chan, K. H.; Ciulli, A., Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 2015, 10 (8), 1770–1777. 25.Cromm, P. M.; Crews, C. M., Targeted protein degradation: from chemical biology to drug discovery. Chem. Biol. 2017, 24 (9), 1181–1190. 26.Donovan, K. A.; Ferguson, F. M.; Bushman, J. W.; Eleuteri, N. A.; Bhunia, D.; Ryu, S.; Tan, L.; Shi, K.; Yue, H.; Liu, X.; Dobrovolsky, D.; Jiang, B.; Wang, J.; Hao, M.; You, I.; Teng, M.; Liang, Y.; Hatcher, J.; Li, Z.; Manz, T. D.; Groendyke, B.; Hu, W.; Nam, Y.; Sengupta, S.; Cho, H.; Shin, I.; Agius, M. P.; Ghobrial, I. M.; Ma, M. W.; Che, J.; Buhrlage, S. J.; Sim, T.; Gray, N. S.; Fischer E. S., Mapping the degradable kinome provides a resource for expedited degrader development. Cell 2020, 183 (6), 1714–1731. 27.Pettersson, M.; Crews, C. M., Proteolysis targeting chimeras (PROTACs) — past, present and future. Drug Discov. Today Technol. 2019, 31, 15–27. 28.Dale, B.; Cheng, M.; Park, K. S.; Kaniskan, H. Ü.; Xiong, Y.; Jin, J., Advancing targeted protein degradation for cancer therapy. Nat. Rev. Cancer 2021, 21(10), 638-654. 29.Nomura, D. K.; Dix, M. M.; Cravatt, B. F., Activity-based protein profiling for biochemical pathway discovery in cancer. Nat. Rev. Cancer 2010, 10 (9), 630–638. 30.Evans, M. J.; Cravatt B. F., Mechanism-based profiling of enzyme families. Chem. Rev 2006, 106 (8), 3279–3301. 31.Weerapana, E.; Wang, C.; Simon, G. M.; Richter, F.; Khare, S.; Dillon, M. B. D.; Bachovchin, D. A.; Mowen, K.; Baker, D.; Cravatt, B. F., Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 2010, 468 (7325), 790–795. 32.Zeng, M.; Xiong, Y.; Safaee, N.; Nowak, R. P.; Donovan, K. A.; Yuan, C. J.; Nabet, B.; Gero, T. W.; Feru, F.; Li, L.; Gondi, S.; Ombelets, L. J.; Quan, C.; Jänne, P. A.; Kostic, M.; Scott, D. A.; Westover, K. D.; Fischer, E. S.; Gray, N. S., Exploring targeted degradation strategy for ncogenic KRASG12C. Cell Chemical Biology 2020, 27, 19–31. 33.Foley, C. A.; Potjewyd, F.; Lamb, K. N.; James, L. I.; Frye, S. V., Assessing the cell permeability of bivalent chemical degraders using the chloroalkane penetration assay. ACS Chem. Biol. 2020 15(1), 290–295. 34.Wang, P.; Zhu, H.; Liu, J.; Xie, S.; Xu, S.; Chen, Y.; Xu, J.; Zhao, Y.; Zhu, Z.; Xu, J., Design, synthesis, and biological evaluation of novel protopanoxadiol derivatives based PROTACs technology for the treatment of lung cancer., Bioorg Chem. 2023, 131, 106327. 35.Guedeney, N.; Cornu, M.; Schwalen, F.;Kieffer, C.; Voison-Chiret, A. S., PROTAC technology: a new drug design for chemical biology with many challenges in drug discovery. Drug Discov. Today 2023, 28(1), 103395. 36.Dupree, E. J.; Jayathirtha, M.; Yorkey, H.; Mihasan, M.; Petre, B. A.; Darie, C. C., A critical review of bottom-up proteomics: the good, the bad, and the future of this field. Proteomes. 2020, 8(3):14. 37.Scholes, N. S.; Ruiz, C. M.; Winter, G. E., Identification and selectivity profiling of small-molecule degraders via multi-omics approaches. Cell Chem. Biol. 2021, 28, 1048-1060. 38.Chen, T. Q.; Huang, H. J.; Zhu, S. X.; Chen, X. T.; Pu, K. J.; Wang, D.; An, Y.: Lian, J. Y.; Sun, Y. M.; Chen, Y. Q.; Wang, W. T., Blockade of the lncRNA-DOT1L-LAMP5 axis enhances autophagy and promotes degradation of MLL fusion proteins. Trends Pharmacol. Sci. 2023, 44, 786-801.]] 39.Sternicki, L. M.; Nonomiya, J.; Liu, M.; Mulvihull, M. M.; Quinn, R. J., Native mass spectrometry for the study of PROTAC GNE-987-containing ternary complexes. ChemMedChem 2021, 16, 2206–2210. 40.Simpson, L.M. et al. An affinity-directed phosphatase, Adphosphatase, system for targeted protein dephosphorylation. Cell Chem. Biol. 2023, 30, 188–202. 41.Tseng,Y. W.; Yang, T. J.; Hsu, Y. L.; Liu, J. H.; Tseng, Y. C.; Hsu, T. W.; Lu, Y.; Pan, S. H.; Cheng, T. J.; Fang, J. M. Dual-targeting compounds possessing enhanced anticancer activity via microtubule disruption and histone deacetylase inhibition. Eur. J. Med. Chem. 2024, 265, 116042. 42.Schwabacher, A. W.; Lane, J. W.; Schiesher, M. W.; Leigh, K. M.; Johnson, C. W., Desymmetrization reactions: efficient preparation of unsymmetrically substituted linker molecules. J. Org. Chem. 1998, 63(5), 1727–1729. 43.Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3-25. 44.Mariadason, J. M.; Corner, G. A.; Augenlicht, L. H., Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer. Cancer Res. 2000, 60, 4561–4572. 45.Hull, E. E.; Montgomery M. R.; Leyva, K. J., HDAC Inhibitors as epigenetic regulators of the immune system: impacts on cancer therapy and inflammatory diseases. BioMed. Res. Int. 2016, 8797206. 46.Halkidou, K.; Gaughan, L.; Cook, S.; Leung, H. Y.; Neal, D. E.; Robson, C. N., Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 2004, 59, 177-189. 47.Zhang, Z.; Yamashita, H.; Toyama, T.; Sugiura, H.; Ando, Y.; Mita, K.; Hamaguchi, M.; Hara, Y.; Kobayashi, S.; Iwase, H., Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast. Breast Cancer Res. Treat. 2005, 94, 11-16. 48.Choi, J. H.; Kwon, H. J.; Yoon, B. I.; Kim, J. H.; Han, S. U.; Joo, H. J.; Kim, D. Y., Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn. J. Cancer Res. 2001, 92, 1300-1304. 49.Song, J.; Noh, J. H.; Lee, J. H.; Eun, J. W.; Ahn, Y. M.; Kim, S. Y.; Lee, S. H.; Park, W. S.; Yoo, N. J.; Lee, J. Y.; Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS 2005, 113, 264–268. 50.Zhu, P.; Martin, E.; Mengwasser, J.; Schlag, P.; Janssen, K. P.; Göttlicher, M., Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 2004, 5, 455–463. 51.Wilson, A. J.; Byun, D. S.; Popova, N.; Murray, L. B.; L’Italien, K.; Sowa, Y.; Arango, D.; Velcich, A.; Augenlicht, L. H.; Mariadason, J. M., Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J. Biol. Chem. 2006, 281, 13548–13558. 52.Nakagawa, M.; Oda, Y.; Eguchi, T.; Aishima, S. I.; Yao, T.; Hosoi, F.; Basaki, Y.; Ono, M.; Kuwano, M.; Tanaka, M., Potential non-oncological applications of histone deacetylase inhibitors. Oncol. Rep. 2007, 18, 769–774. 53.Eckschlager, T.; Plch, J.; Stiborova, M.; Harbeta, M., Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci. 2017, 18(7), 1414. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92848 | - |
| dc.description.abstract | 每年肺癌造成約180萬人死亡,為全世界第二常見的癌症。之前中央研究院及國立臺灣大學的團隊經由高通量藥物篩選分析,選出了嘌呤類化合物1 (GRC0321)可以讓肺癌細胞凋亡。而該研究也發現投入此化合物可促使微管斷裂,因而推測化合物1是經由活化細胞劍蛋白 (katanin),分解微管以達到抑制肺癌細胞的效果。
因此,我們考慮使用蛋白降解靶向嵌合體(proteolysis targeting chimeras, PROTAC)的策略,以證實化合物1的作用靶點。蛋白質的泛素化是一種轉譯後修飾的過程,目標受質藉由 E1、E2、E3促使泛蛋白(ubiquitin, Ub)連接上目標蛋白的離胺酸。而PROTAC藉由兩個靶點嵌合的特性,分別去招募E3連接酶及目標蛋白,透過化學的方式達成蛋白質的泛素化降解。本論文中,我們將化合物1與E3配位基連接,設計出一個能誘發標的蛋白水解的嵌合體。首先必須決定最適合的連接位置,最佳化嵌合物連接分子的長度及組成,再進行生物抑制活性測試來驗證。 本研究發現化合物2於C6-醯基上接上六個碳的碳鏈,對H1975肺癌細胞及MDA-MB231乳癌細胞具有抑制活性,其IC50分別為56.3 µM及43.5 µM;而於N9-苯環上連接碳鏈的化合物4則有更好的表現,其IC50分別為9.9 µM及0.7 µM。基於此研究結果,我們合成以五個碳作為連接鏈的PROTAC型化合物22、24,然而經測試發現兩者對細胞株都沒有抑制能力,推測為連接鏈不夠長使E3配位基阻礙到受體和嘌呤類藥物間的作用。為解決此問題,我們選擇使用較容易延長的聚乙烯作為連接鏈,其中以五單元聚乙烯作為連接鏈的PROTAC型化合物33 (JMF4675) 對H1975肺癌細胞及MDA-MB231乳癌細胞具有不錯的抑制活性,其IC50分別為0.83 µM及35.1 µM。後續也參考了近期文獻,得到一些連接鏈的範例,方便往後嘗試使用適當的連接鏈,期望能獲得表現更好的PROTAC型化合物。 | zh_TW |
| dc.description.abstract | Lung cancer is the second most common cancer, making up almost 1.8 million deaths per year. By using high throughput screening, the purine-type compound 1 (GRC0321) was found to be cytotoxic to non-small cell lung cancer (NSCLC) by activating katanin, a microtubule severing protein.
In addition to the biochemical evidence, we consider using a proteolysis targeting chimera (PROTAC) strategy to validate the protein target of compound 1. Ubiquitination is a post-translational modification process which makes ubiquitin connect to the lysine of the target protein through E1, E2, and E3. PROTAC uses the chimeric properties to recruit E3 ligase and target proteins, achieving protein degradation by chemical means. In this approach, a chimeric molecule is designed to contain structure 1 and an E3 ligand connected by a linker. We have determined a suitable position to place linkers. In addition, several PROTAC compounds have been synthesized and submitted for the cell-based assays to find the best linker with appropriate length and composition. Compound 2, which has a hexylene linker connected to the C6-acyl group, displays good potency to inhibit the growth of H1975 lung cancer cell and MDA-MB231 breast cancer cell, with IC50 values of 56.3 µM and 43.5 µM, respectively. Compound 4, which has a hexylene linker connected to the N9-phenyl ring, shows IC50 values of 9.9 µM and 0.7 µM against H1975 and MDA-MB231 cells, respectively. Based on the results, we synthesized PROTAC compounds 22 and 24 with pentylene linker. However, we found that neither of them has inhibitory activity against H1975 or MDA-MB231 cell lines. The possible reason is that the linker is not long enough, thus the E3 ligand hinders the interaction between katanin receptor and the purine-type drug. To solve this problem, we chose polyethyleneglycol (PEG) linkers with various lengths. Among them, PROTAC-type compound 33 (JMF4675) with a penta-PEG linker showed good inhibitory activity against H1975 lung cancer and MDA-MB231 breast cancer cells, with IC50 values of 0.83 µM and 35.1 µM, respectively. We also referred to recent literature to construct some typical linkers, hoping to design PROTAC-type compounds with better cancer cell cytotoxicity. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-02T16:16:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-02T16:16:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書............................................I
摘要..........................................................................II Abstract .....................................................................IV 目次 ..........................................................................VI 圖次 ........................................................................VIII 流程次.........................................................................IX 表次............................................................................X 簡稱用語對照表..........................................................XI 第一章 緒論 ...................................................................1 1.1.1 肺癌 (Lung cancer) ......................................................1 1.1.2 化學治療非小細胞肺癌的標靶藥物(Chemotherapeutic drug targeting NSCLC).........2 1.1.3 微管 (Microtubule) .....................................................2 1.1.4 嘌呤類型的藥物(Purine-type drug) ...................................3 1.1.5 泛素化(Ubiquitination) ...................................................4 1.1.6 小分子蛋白水解靶向嵌合體(Small-molecule PROTAC) ........6 1.1.7 連接鏈長度對生物活性的影響 .........................................8 1.1.8 常見的E3連接酶招募劑 ..............................................10 1.1.9 PROTAC型藥物的研發思路 .........................................12 1.1.10蛋白質體研究 ............................................................16 1.2 本研究之目標 ...............................................................18 第二章 結果與討論 .....................................................19 2.1 合成路徑及生物活性 ......................................................19 2.1.1 E3 配體 與嘌呤類藥物 1 的選用......................................19 2.1.2 合成嘌呤型化合物 2、3、4 具有不同連接位置的取代基 ....20 2.1.3 化合物 2、3、4 之生物活性 ..........................................23 2.1.4 合成 PROTAC 化合物 22、24 .......................................24 2.1.5 PROTAC 化合物 2、3、4 之生物活性 ............................26 2.1.6 連接鏈脂溶性的考量 ...................................................28 2.1.7 合成 PROTAC 化合物 33 (JMF4675) ..............................29 2.1.8 PROTAC 化合物 33 的生物活性.....................................30 第三章 結論與展望 .....................................................33 第四章 實驗部份 .........................................................35 4.1 General part .............................................................35 4.2 Instrumentation .........................................................35 4.3 Cell lines and culture conditions .......................................36 4.4 HDACs activity assay .....................................................36 4.5 Cytotoxicity against H1975 and MDA-MB231 cells ...............36 4.6 Synthesis and characterization of compounds ......................37 第五章 參考文獻 .........................................................53 附錄:NMR光譜 ........................................................58 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 蛋白降解靶向嵌合體 | zh_TW |
| dc.subject | 連接鏈 | zh_TW |
| dc.subject | 非小細胞肺癌 | zh_TW |
| dc.subject | 嘌呤型藥物 | zh_TW |
| dc.subject | E3連接酶招募劑 | zh_TW |
| dc.subject | non-small cell lung cancer | en |
| dc.subject | proteolysis targeting chimera | en |
| dc.subject | E3 ligase | en |
| dc.subject | purine-type drug | en |
| dc.subject | linker | en |
| dc.title | 設計及合成嘌呤型複合體作為蛋白水解靶向嵌合體來抑制癌細胞生長 | zh_TW |
| dc.title | Design and Synthesis of Purine-type Conjugates as Proteolysis Targeting Chimeras (PROTAC) to Inhibit Cancer Cell Growth | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡蘊明;羅禮強;王宗興 | zh_TW |
| dc.contributor.oralexamcommittee | Yun-Ming Tsai;Li-Chiang Luo;Tzung-Shing Wang | en |
| dc.subject.keyword | 蛋白降解靶向嵌合體,連接鏈,非小細胞肺癌,嘌呤型藥物,E3連接酶招募劑, | zh_TW |
| dc.subject.keyword | proteolysis targeting chimera,linker,non-small cell lung cancer,purine-type drug,E3 ligase, | en |
| dc.relation.page | 63 | - |
| dc.identifier.doi | 10.6342/NTU202401265 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-06-25 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
