Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92847
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉如熹zh_TW
dc.contributor.advisorRu-Shi Liuen
dc.contributor.author黃敏瑄zh_TW
dc.contributor.authorMing-Hsuan Huangen
dc.date.accessioned2024-07-02T16:16:09Z-
dc.date.available2024-07-03-
dc.date.copyright2024-07-02-
dc.date.issued2024-
dc.date.submitted2024-06-25-
dc.identifier.citation(1) Huygens, C. Treatise on Light: In Which Are Explained the Causes of That Which Occurs in Reflection & Refraction; Dover Publications, 1690.
(2) Newton, I. Opticks, or, a Treatise of the Reflections, Refractions, Inflections & Colours of Light; Courier Corporation, 1952.
(3) De Broglie, L. Waves and Quanta. Nature 1923, 112, 540–540.
(4) Zubairy, M. S. A Very Brief History of Light. In Optics in Our Time, Al Amri, M. D., El Gomati, M., Zubairy, M. S. Eds.; Springer International Publishing, 2016; pp 3–24.
(5) Kerker, M. CHAPTER 2 – Electromagnetic Waves. In The Scattering of Light and Other Electromagnetic Radiation, Kerker, M. Ed.; Vol. 16; Academic Press, 1969; pp 8–26.
(6) Vatansever, F.; Hamblin, M. R. Far Infrared radiation (FIR): Its Biological Effects and Medical Applications. Photonics Lasers Med. 2012, 1, 255–266.
(7) Gai, S.; Zhou, C.; Peng, L.; Wu, M.; Gao, P.; Su, L.; Molokeev, M.; Zhou, Z.; Xia, M. A Novel Cr3+-Doped Stannate Far Red Phosphor for Plant Lighting: Structure Evolution, Broad-Narrow Spectrum Tuning and Application Prospect. Mater. Today Chem. 2022, 26, 101107.
(8) Das, S.; Sharma, S. K.; Manam, J. Near Infrared Emitting Cr3+ Doped Zn3Ga2Ge2O10 Long Persistent Phosphor for Night Vision Surveillance and Anti-Counterfeit Applications. Ceram. Int. 2022, 48, 824–831.
(9) Kim, J. G.; Xia, M.; Liu, H. Extinction Coefficients of Hemoglobin for Near-Infrared Spectroscopy of Tissue. IEEE Eng. Med. Biol. Mag. 2005, 24, 118–121.
(10) Wang, C.; Wang, X.; Zhou, Y.; Zhang, S.; Li, C.; Hu, D.; Xu, L.; Jiao, H. An Ultra-Broadband Near-Infrared Cr3+-Activated Gallogermanate Mg3Ga2GeO8 Phosphor as Light Sources for Food Analysis. ACS Appl. Electron. Mater. 2019, 1, 1046–1053.
(11) Huang, W. T.; Chen, K. C.; Huang, M. H.; Liu, R. S. Tunable Spinel Structure Phosphors: Dynamic Change in Near‐Infrared Windows and Their Applications. Adv. Opt. Mater. 2023, 11, 2301166.
(12) Zhao, M.; Li, B.; Zhang, H.; Zhang, F. Activatable Fluorescence Sensors for in Vivo Bio-Detection in the Second Near-Infrared Window. Chem. Sci. 2021, 12, 3448–3459.
(13) Liu, C. N.; Liu, C. M.; Huang, S. L.; Cheng, W. H. Broadband Single-Mode Cr-Doped Crystalline Core Fiber with Record 11-dB Net Gain by Precise Laser-Heated Pedestal Growth and Tetrahedral Chromium Optimization. J. Light. Technol. 2021, 39, 3531–3538.
(14) Valeur, B.; Berberan Santos, M. N. A Brief History of Fluorescence and Phosphorescence before the Emergence of Quantum Theory. J. Chem. Educ. 2011, 88, 731–738.
(15) Kitai, A. Luminescent Materials and Applications; John Wiley & Sons, 2008.
(16) Shinde, K. N.; Dhoble, S. J.; Swart, H. C.; Park, K. Phosphate Phosphors for Solid-State Lighting; Springer Science & Business Media, 2012.
(17) Round, H. J. A Note on Carborundum. In Semiconductor Devices: Pioneering Papers, World Scientific, 1991; pp 879–879.
(18) Bergh, A. A.; Dean, P. J. Light-Emitting Diodes. Proc. IEEE 1972, 60, 156–223.
(19) Nair, G. B.; Swart, H. C.; Dhoble, S. J. A Review on the Advancements in Phosphor-Converted Light Emitting Diodes (pc-LEDs): Phosphor Synthesis, Device Fabrication and Characterization. Prog. Mater. Sci. 2020, 109, 100622.
(20) Cho, J.; Park, J. H.; Kim, J. K.; Schubert, E. F. White Light‐Emitting Diodes: History, Progress, and Future. Laser Photonics Rev. 2017, 11, 1600147.
(21) Jia, J.; Zhang, A.; Li, D.; Liu, X.; Xu, B.; Jia, H. Preparation and Properties of the Flexible Remote Phosphor Film for Blue Chip-Based White LED. Mater. Des. 2016, 102, 8–13.
(22) Halappa, P.; Shivakumara, C. Synthesis and Characterization of Luminescent La2Zr2O7/Sm3+ Polymer Nanocomposites. In Trends and Applications in Advanced Polymeric Materials, 2017; pp 163–189.
(23) Ropp, R. C. Luminescence and the Solid State; Elsevier 2013.
(24) Jablonski, A. Efficiency of Anti-Stokes Fluorescence in Dyes. Nature 1933, 131, 839–840.
(25) Introduction to Fluorescence. In Principles of Fluorescence Spectroscopy, Lakowicz, J. R. Ed.; Springer US, 2006; pp 1–26.
(26) Harris, D. C.; Bertolucci, M. D. Symmetry and Spectroscopy: an Introduction to Vibrational and Electronic Spectroscopy; 1989.
(27) Kasha, M. Characterization of Electronic Transitions in Complex Molecules. Disc. Faraday Soc. 1950, 9, 14–19.
(28) Gupta, V. P. Principles and Applications of Quantum Chemistry; Academic Press, 2016.
(29) Coolidge, A. S.; James, H. M.; Present, R. D. A Study of the Franck–Condon Principle. J. Chem. Phys. 1936, 4, 193–211.
(30) Ter Mikirtychev, V. V. Optical Spectroscopy of Rare-Earth Ions in the Solid State. In Encyclopedia of Spectroscopy and Spectrometry (Third Edition), Lindon, J. C., Tranter, G. E., Koppenaal, D. W. Eds.; Academic Press, 2017; pp 481–491.
(31) Chang, C. Y.; Majewska, N.; Chen, K. C.; Huang, W. T.; Leśniewski, T.; Leniec, G.; Kaczmarek, S. M.; Pang, W. K.; Peterson, V. K.; Cherng, D. H.; Lu, K. M.; Mahlik, S.; Liu, R. S. Broadening Phosphor-Converted Light-Emitting Diode Emission: Controlling Disorder. Chem. Mater. 2022, 34, 10190–10199.
(32) Benz, F.; Gonser, A.; Völker, R.; Walther, T.; Mosebach, J. T.; Schwanda, B.; Mayer, N.; Richter, G.; Strunk, H. P. Concentration Quenching of the Luminescence from Trivalent Thulium, Terbium, and Erbium Ions Embedded in an AlN Matrix. J. Lumin. 2014, 145, 855–858.
(33) Lin, Y. C.; Bettinelli, M.; Karlsson, M. Unraveling the Mechanisms of Thermal Quenching of Luminescence in Ce3+-Doped Garnet Phosphors. Chem. Mater. 2019, 31, 3851–3862.
(34) Amachraa, M.; Wang, Z.; Chen, C.; Hariyani, S.; Tang, H.; Brgoch, J.; Ong, S. P. Predicting Thermal Quenching in Inorganic Phosphors. Chem. Mater. 2020, 32, 6256–6265.
(35) Rajendran, V.; Chang, H.; Liu, R. S. Recent Progress on Broadband Near-Infrared Phosphors-Converted Light Emitting Diodes for Future Miniature Spectrometers. Opt. Mater: X 2019, 1, 100011.
(36) Yeerlan, M.; Zhang, M.; Dai, P. Near-Unity Quantum Efficiency Wavelength-Tunable NIR Phosphors (Sr2−yCay)Sc1−xSbO6: xFe3+ with Excellent Thermal Stability. J. Am. Ceram. Soc. 2024, DOI: 10.1111/jace.19852.
(37) Xiao, Y.; Xiong, P.; Zhang, S.; Chen, K.; Tian, S.; Sun, Y.; Shao, P.; Qin, K.; Brik, M. G.; Ye, S.; Chen, D.; Yang, Z. Deep-Red to NIR Mechanoluminescence in Centrosymmetric Perovskite MgGeO3:Mn2+ for Potential Dynamic Signature Anti-Counterfeiting. Chem. Eng. J. 2023, 453, 139671.
(38) Fang, M. H.; De Guzman, G. N. A.; Bao, Z.; Majewska, N.; Mahlik, S.; Grinberg, M.; Leniec, G.; Kaczmarek, S. M.; Yang, C. W.; Lu, K. M.; Sheu, H. S.; Hu, S. F.; Liu, R. S. Ultra-High-Efficiency Near-Infrared Ga2O3:Cr3+ Phosphor and Controlling of Phytochrome. J. Mater. Chem. C 2020, 8, 11013–11017.
(39) Yuan, L.; Jin, Y.; Wu, H.; Deng, K.; Qu, B.; Chen, L.; Hu, Y.; Liu, R. S. Ni2+-Doped Garnet Solid-Solution Phosphor-Converted Broadband Shortwave Infrared Light-Emitting Diodes toward Spectroscopy Application. ACS Appl. Mater. Interfaces 2022, 14, 4265–4275.
(40) Dwivedi, A.; Roy, A.; Rai, S. Photoluminescence Behavior of Rare Earth Doped Self-Activated Phosphors (ie Niobate and Vanadate) and Their Applications. RSC Adv. 2023, 13, 16260–16271.
(41) Kowalska, K.; Kuwik, M.; Pisarska, J.; Pisarski, W. A. Near-IR Luminescence of Rare-Earth Ions (Er3+, Pr3+, Ho3+, Tm3+) in Titanate–Germanate Glasses under Excitation of Yb3+. Materials 2022, 15, 3660.
(42) AitMellal, O.; Oufni, L.; Messous, M. Y.; Tahri, M.; Neatu, Ş.; Florea, M.; Neatu, F.; Secu, M. Structural Properties and Near-Infrared Light from Ce3+/Nd3+-Do-Doped LaPO4 Nanophosphors for Solar Cell Applications. J. Mater. Sci.: Mater. Electron. 2022, 33, 4197–4210.
(43) Qiao, J.; Zhang, S.; Zhou, X.; Chen, W.; Gautier, R.; Xia, Z. Near‐Infrared Light‐Emitting Diodes Utilizing a Europium‐Activated Calcium Oxide Phosphor with External Quantum Efficiency of up to 54.7%. Adv. Mater. 2022, 34, 2201887.
(44) Yang, Z.; Zhao, Y.; Zhou, Y.; Qiao, J.; Chuang, Y. C.; Molokeev, M. S.; Xia, Z. Giant Red‐Shifted Emission in (Sr,Ba)Y2O4:Eu2+ Phosphor toward Broadband Near‐Infrared Luminescence. Adv. Funct. Mater. 2022, 32, 2103927.
(45) Hayashi, D. Applications of Infrared Phosphors in Medical Diagnostics (Invited Talk at Global Phosphor Summit 2017); 2017. DOI: 10.13140/RG.2.2.31443.99364.
(46) Rajendran, V.; Huang, W. T.; Chen, K. C.; Chang, H.; Liu, R. S. Energy-Saving Chromium-Activated Garnet-Structured Phosphor-Converted Near-Infrared Light-Emitting Diodes. J. Mater. Chem. C 2022, 10, 14367–14378.
(47) Liu, S.; Wang, Z.; Cai, H.; Song, Z.; Liu, Q. Highly Efficient Near-Infrared Phosphor LaMgGa11O19:Cr3+. Inorg. Chem. Front. 2020, 7, 1467–1473.
(48) Zhou, H.; Cai, H.; Zhao, J.; Song, Z.; Liu, Q. Crystallographic Control for Cr4+ Activators toward Efficient NIR-II Luminescence. Inorg. Chem. Front. 2022, 9, 1912–1919.
(49) Ye, Z.; Wang, Z.; Yang, H.; Huo, X.; Wang, Y.; Wu, Q.; Wang, D.; Zhao, J.; Suo, H.; Li, P. A Non-Rare Earth Ion Doped Broadband Emission Phosphor Located in NIR-II for Ethanol Concentration Detection. Dalton Trans. 2022, 51, 13499–13506.
(50) Yuan, S.; Mu, Z.; Lou, L.; Zhao, S.; Zhu, D.; Wu, F. Broadband NIR-II Phosphors with Cr4+ Single Activated Centers Based on Special Crystal Structure for Nondestructive Analysis. Ceram. Int. 2022, 48, 26884–26893.
(51) Rajendran, V.; Huang, W. T.; Chen, K. C.; Wei, D. H.; Chang, H.; Liu, R. S. Shortwave Infrared Luminescence of Tetravalent Chromium and Divalent Nickel: Phosphor Design Principles and Applications. ACS Appl. Opt. Mater. 2023, 1, 1063–1079.
(52) Zhang, Q.; Liu, D.; Wang, Z.; Dang, P.; Lian, H.; Li, G.; Lin, J. LaMgGa11O19:Cr3+,Ni2+ as Blue‐Light Excitable Near‐Infrared Luminescent Materials with Ultra‐Wide Emission and High External Quantum Efficiency. Adv. Opt. Mater. 2023, 11, 2202478.
(53) Yu, G.; Wang, W.; Jiang, C. Linear Tunable NIR Emission via Selective Doping of Ni2+ Ion into ZnX2O4 (X = Al, Ga, Cr) Spinel Matrix. Ceram. Int. 2021, 47, 17678–17683.
(54) Liu, B. M.; Guo, X. X.; Huang, L.; Zhou, R. F.; Zou, R.; Ma, C. G.; Wang, J. A Super‐Broadband NIR Dual‐Emitting Mg2SnO4:Cr3+,Ni2+ Phosphor for Ratiometric Phosphor‐Converted NIR Light Source Applications. Adv. Mater. Technol. 2023, 8, 2201181.
(55) Rajendran, V.; Chang, H.; Liu, R. S. Phosphor-Converting LED for Broadband IR. In Phosphor Handbook: Novel Phosphors, Synthesis, and Applications, Liu, R. S., Wang, X. Eds.; Vol. 2; CRC Press: Boca Raton, 2022; pp 87–130.
(56) Bragg, W. The Structure of the Spinel Group of Crystals. Phil. Magz. 1915, 30, 305–315.
(57) Nishikawa, S. Structure of Some Crystals of Spinel Group. Proceedings of the Tokyo Mathematico-Physical Society. 2nd Series 1915, 8, 199–209.
(58) Chi, N.; Quang, N.; Tuan, N.; Kien, N.; Trung, D.; Huy, P.; Tam, P. D.; Nguyen, D. Deep Red Emitting MgAl2O4:Cr3+ Phosphor for Solid State Lighting. J. Electron. Mater. 2019, 48, 5891–5899.
(59) Brik, M. G.; Papan, J.; Jovanović, D. J.; Dramićanin, M. Luminescence of Cr3+ Ions in ZnAl2O4 and MgAl2O4 Spinels: Correlation between Experimental Spectroscopic Studies and Crystal Field Calculations. J. Lumin. 2016, 177, 145–151.
(60) Safeera, T.; Johny, J.; Shaji, S.; Nien, Y. T.; Anila, E. Impact of Activator Incorporation on Red Emitting Rods of ZnGa2O4:Cr3+ Phosphor. Mater. Sci. Eng. C 2019, 94, 1037–1043.
(61) Pilania, G.; Kocevski, V.; Valdez, J. A.; Kreller, C. R.; Uberuaga, B. P. Prediction of Structure and Cation Ordering in an Ordered Normal-Inverse Double Spinel. Commun. Mater. 2020, 1, 84.
(62) Zhou, Z.; He, F.; Song, E.; Zhang, S.; Yi, X.; Zhang, H.; Le, Y.; Ye, S.; Xu, S.; Qiu, J.; Dong, G. Broadband and Multimode Near‐Infrared Emitter Based on Cr3+‐Activated Stannate for Multifunctional Applications. Adv. Opt. Mater. 2023, 11, 2202466.
(63) Taktak, O.; Souissi, H.; Kammoun, S. Optical Properties of the Phosphors Zn2SnO4:Cr3+ with Near-Infrared Long-Persistence Phosphorescence for Bio-Imaging Applications. J. Lumin. 2020, 228, 117563.
(64) Basavaraju, N.; Sharma, S.; Bessière, A.; Viana, B.; Gourier, D.; Priolkar, K. Red Persistent Luminescence in MgGa2O4:Cr3+; a New Phosphor for in Vivo Imaging. J. Phys. D: Appl. Phys. 2013, 46, 375401.
(65) Millard, R.; Peterson, R.; Swainson, I. Synthetic MgGa2O4–Mg2GeO4 Spinel Solid Solution and β–Mg3Ga2GeO8: Chemistry, Crystal Structures, Cation Ordering, and Comparison to Mg2GeO4 Olivine. Phys. Chem. Miner. 2000, 27, 179–193.
(66) Wang, C.; Zhang, Y.; Han, X.; Hu, D.; He, D.; Wang, X.; Jiao, H. Energy Transfer Enhanced Broadband Near-Infrared Phosphors: Cr3+/Ni2+ Activated ZnGa2O4–Zn2SnO4 Solid Solutions for the Second NIR Window Imaging. J. Mater. Chem. C 2021, 9, 4583–4590.
(67) Tsai, Y. T.; Huang, Y. K.; Jiang, Z. F.; Yao, Y.; Lo, P. H.; Chao, Y. C.; Lin, B. H.; Lin, C. C. Cation Substitution-Induced Partial Inversion to Pervade Short-Wave Infrared Light for Improving the Accuracy of Artificial Intelligence Image Recognition System. ACS Mater. Lett. 2023, 5, 738–743.
(68) Chang, C. Y.; Huang, M. H.; Chen, K. C.; Huang, W. T.; Kamiński, M.; Majewska, N.; Klimczuk, T.; Chen, J. H.; Cherng, D. H.; Lu, K. M.; Pang, W. K.; Peterson, V. K.; Mahlik, S.; Leniec, G.; Liu, R. S. Ultra-High Quantum Efficiency Near-Infrared-II Emission Achieved by Cr3+ Cluster to Ni2+ Energy Transfer. Chem. Mater. 2024, 36, 3941–3948.
(69) Atkins, P.; Overton, T.; Rourke, J.; Weller, M.; Armstrong, F.; Hagerman, M. Shriver & Atkins’ Inorganic Chemistry 2010; Oxford University Press: Oxford, UK, 2003.
(70) Housecroft, C. E.; Sharpe, A. G. Inorganic Chemistry; New York: Pearson, Harlow, England, 2012.
(71) De Guzman, G. N. A.; Fang, M. H.; Liang, C. H.; Bao, Z.; Hu, S. F.; Liu, R. S. Near-Infrared Phosphors and Their Full Potential: a Review on Practical Applications and Future Perspectives. J. Lumin. 2020, 219, 116944.
(72) Fang, M. H.; Chen, K. C.; Majewska, N.; Lesniewski, T.; Mahlik, S.; Leniec, G.; Kaczmarek, S. M.; Yang, C. W.; Lu, K. M.; Sheu, H. S.; Liu, R. S. Hidden Structural Evolution and Bond Valence Control in Near-Infrared Phosphors for Light-Emitting Diodes. ACS Energy Lett. 2020, 6, 109–114.
(73) Zhong, J.; Zhuo, Y.; Du, F.; Zhang, H.; Zhao, W.; Brgoch, J. Efficient and Tunable Luminescence in Ga2–xInxO3:Cr3+ for Near-Infrared Imaging. ACS Appl. Mater. Interfaces 2021, 13, 31835–31842.
(74) Tanabe, Y.; Sugano, S. On the Absorption Spectra of Complex Ions II. J. Phys. Soc. Jpn. 1954, 9, 766–779.
(75) Racah, G. Theory of Complex Spectra. II. Phys. Rev. 1942, 62, 438.
(76) Tanabe, Y.; Sugano, S. On the Absorption Spectra of Complex Ions, III the Calculation of the Crystalline Field Strength. J. Phys. Soc. Jpn. 1956, 11, 864–877.
(77) Adachi, S. Spectroscopy of Cr3+ Activator: Tanabe−Sugano Diagram and Racah Parameter Analysis. J. Lumin. 2021, 232, 117844.
(78) Chen, K. C.; Fang, M. H.; Huang, W. T.; Kamiński, M.; Majewska, N.; Lesniewski, T.; Mahlik, S.; Leniec, G.; Kaczmarek, S. M.; Yang, C. W.; Lu, K. M.; Sheu, H. S.; Liu, R. S. Chemical and Mechanical Pressure-Induced Photoluminescence Tuning via Structural Evolution and Hydrostatic Pressure. Chem. Mater. 2021, 33, 3832–3840.
(79) Zhang, X.; Huang, Y.; Gong, M. Dual-Emitting Ce3+, Tb3+ Co-Doped LaOBr Phosphor: Luminescence, Energy Transfer and Ratiometric Temperature Sensing. Chem. Eng. J. 2017, 307, 291–299.
(80) Yang, W. J.; Luo, L.; Chen, T. M.; Wang, N. S. Luminescence and Energy Transfer of Eu-and Mn-Coactivated CaAl2Si2O8 as a Potential Phosphor for White-Light UVLED. Chem. Mater. 2005, 17, 3883–3888.
(81) Li, K.; Shang, M.; Lian, H.; Lin, J. Recent Development in Phosphors with Different Emitting Colors via Energy Transfer. J. Mater. Chem. C 2016, 4, 5507–5530.
(82) Wang, L. L.; Wang, Q. L.; Xu, X. Y.; Li, J. Z.; Gao, L. B.; Kang, W. K.; Shi, J. S.; Wang, J. Energy Transfer from Bi3+ to Eu3+ Triggers Exceptional Long-Wavelength Excitation Band in ZnWO4:Bi3+,Eu3+ Phosphors. J. Mater. Chem. C 2013, 1, 8033–8040.
(83) Wei, G.; Li, P.; Li, R.; Wang, Y.; He, S.; Li, J.; Shi, Y.; Suo, H.; Yang, Y.; Wang, Z. How to Achieve Excellent Luminescence Properties of Cr Ion‐Doped Near‐Infrared Phosphors. Adv. Opt. Mater. 2023, 11, 2301794.
(84) Rajendran, V.; Chen, K. C.; Huang, W. T.; Kamiński, M.; Grzegorczyk, M.; Mahlik, S.; Leniec, G.; Lu, K. M.; Wei, D. H.; Chang, H.; Liu, R. S. Unraveling Luminescent Energy Transfer Pathways: Futuristic Approach of Miniature Shortwave Infrared Light-Emitting Diode Design. ACS Energy Lett. 2023, 8, 2395–2400.
(85) Miao, S.; Liang, Y.; Zhang, Y.; Chen, D.; Wang, X. J. Blue LED‐Pumped Broadband Short‐Wave Infrared Emitter Based on LiMgPO4:Cr3+,Ni2+ Phosphor. Adv. Mater. Technol. 2022, 7, 2200320.
(86) Zhuo, Y.; Wu, F.; Niu, Y.; Wang, Y.; Zhang, Q.; Teng, Y.; Dong, H.; Mu, Z. Super Broadband Emission Across NIR-I and NIR-II Under Blue Light Excitation of Cr3+, Ni2+ Co-Doped Sr2GaTaO6 Phosphor Achieved by Two-Site Occupation and Effective Energy Transfer. Laser Photonics Rev. 2024, DOI: 10.1002/lpor.202400105.
(87) D''Alessandro, D. M.; Keene, F. R. Current Trends and Future Challenges in the Experimental, Theoretical and Computational Analysis of Intervalence Charge Transfer (IVCT) Transitions. Chem. Soc. Rev. 2006, 35, 424–440.
(88) Hu, T.; Xia, Z.; Zhang, Q. Broadband Emission of Lu2SrAl4SiO12: Eu2+ Phosphor for Full-Spectrum Lighting. Opt. Mater.: X 2022, 13, 100138.
(89) Awater, R. H.; Dorenbos, P. The Bi3+ 6s and 6p Electron Binding Energies in Relation to the Chemical Environment of Inorganic Compounds. J. Lumin. 2017, 184, 221–231.
(90) Liu, S.; Du, J.; Song, Z.; Ma, C.; Liu, Q. Intervalence Charge Transfer of Cr3+–Cr3+ Aggregation for NIR-II Luminescence. Light: Sci. Appl. 2023, 12, 181.
(91) Rajendran, V.; Chang, C. Y.; Huang, M. H.; Chen, K. C.; Huang, W. T.; Kamiński, M.; Lesniewski, T.; Mahlik, S.; Leniec, G.; Lu, K. M.; Wei, D. H.; Chang, H.; Liu, R. S. Chromium Cluster Luminescence: Advancing Near‐Infrared Light‐Emitting Diode Design for Next‐Generation Broadband Compact Light Sources. Adv. Opt. Mater. 2024, 12, 2302645.
(92) Liu, F.; Yan, W.; Chuang, Y. J.; Zhen, Z.; Xie, J.; Pan, Z. Photostimulated Near-Infrared Persistent Luminescence as a New Optical Read-Out from Cr3+-Doped LiGa5O8. Sci. Rep. 2013, 3, 1554.
(93) Huang, W.; Gong, X.; Cui, R.; Li, X.; Li, L.; Wang, X.; Deng, C. Enhanced Persistent Luminescence of LiGa5O8:Cr3+ Near-Infrared Phosphors by Codoping Sn4+. J. Mater. Sci.: Mater. Electron. 2018, 29, 10535–10541.
(94) Pan, Y.; Wu, M.; Su, Q. Comparative Investigation on Synthesis and Photoluminescence of YAG:Ce Phosphor. Mater. Sci. Eng. B. 2004, 106, 251–256.
(95) Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. 1976, 32, 751–767.
(96) Kim, D.; Jeon, K. W.; Jin, J. S.; Kang, S. G.; Seo, D. K.; Park, J. C. Remarkable Flux Effect of Li-Codoping on Highly Enhanced Luminescence of Orthosilicate Ba2SiO4:Eu2+ Phosphors for NUV-LEDs: Autonomous Impurity Purification by Eutectic Li2CO3 Melts. RSC Adv. 2015, 5, 105339–105346.
(97) Eckert, M. Max von Laue and the Discovery of X‐ray Diffraction in 1912. WILEY‐VCH Verlag Berlin: 2012; Vol. 524, pp A83–A85.
(98) Bragg, W. H.; Bragg, W. L. The Reflection of X-Rays by Crystals. Proc. R. Soc. Lond. A 1913, 88, 428–438.
(99) Pecharsky, V. K.; Zavalij, P. Y. Properties, Sources, and Detection of Radiation. In Fundamentals of Powder Diffraction and Structural Characterization of Materials, Pecharsky, V. K., Zavalij, P. Y. Eds.; Springer US, 2009; pp 107–132.
(100) Balerna, A.; Mobilio, S. Introduction to Synchrotron Radiation. In Synchrotron Radiation: Basics, Methods and Applications, Springer, 2014; pp 3–28.
(101) Mobilio, S.; Boscherini, F.; Meneghini, C. Synchrotron Radiation; Springer, 2016.
(102) Hastings, J.; Thomlinson, W.; Cox, D. Synchrotron X-Ray Powder Diffraction. J. Appl. Crystallogr. 1984, 17, 85–95.
(103) Kisi, E. H.; Howard, C. J. Applications of Neutron Powder Diffraction; Oxford University Press, 2012.
(104) Avdeev, M.; Hester, J. R. ECHIDNA: a Decade of High-Resolution Neutron Powder Diffraction at OPAL. J. Appl. Crystallogr. 2018, 51, 1597–1604.
(105) Liss, K. D.; Hunter, B.; Hagen, M.; Noakes, T.; Kennedy, S. Echidna—the New High-Resolution Powder Diffractometer Being Built at OPAL. Phys. B: Condens. Matter. 2006, 385, 1010–1012.
(106) Le Bail, A. Whole Powder Pattern Decomposition Methods and Applications: A Retrospection. Powder Diffr. 2005, 20, 316–326.
(107) Rietveld, H. M. A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Crystallogr. 1969, 2, 65–71.
(108) McCusker, L.; Von Dreele, R.; Cox, D.; Louër, D.; Scardi, P. Rietveld Refinement Guidelines. J. Appl. Crystallogr. 1999, 32, 36–50.
(109) Toby, B. H. R Factors in Rietveld Analysis: How Good is Good Enough? Powder Diffr. 2006, 21, 67–70.
(110) Yamamoto, T. Assignment of Pre‐Edge Peaks in K‐Edge X‐Ray Absorption Spectra of 3d Transition Metal Compounds: Electric Dipole or Quadrupole? X‐Ray Spectrometry: An International Journal 2008, 37, 572–584.
(111) Hummer, A. A.; Rompel, A. Chapter Eight–X-Ray Absorption Spectroscopy: A Tool to Investigate the Local Structure of Metal-Based Anticancer Compounds in Vivo. In Advances in Protein Chemistry and Structural Biology, Christov, C. Z. Ed.; Vol. 93; Academic Press, 2013; pp 257–305.
(112) Koningsberger, D. C.; Prins, R. X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES; 1987.
(113) Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-Ray Absorption Spectroscopy Using IFEFFIT. J. Synchrotron Rad. 2005, 12, 537–541.
(114) Eichel, R.-A.; Schweiger, A. Electron-Zeeman Resolved Electron Paramagnetic Resonance Spectroscopy. J. Magn. Reson. 2001, 152, 276–287.
(115) Weil, J. A.; Bolton, J. R. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications; John Wiley & Sons, 2007.
(116) Mombourquette, M.; Weil, J.; McGavin, D. EPR-NMR User’s Manual; Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada, 1999.
(117) Leniec, G. Electron Paramagnetic Resonance: A Technique to Locate the Nearest Environment of Chromium Luminescent Centers. ACS Appl. Opt. Mater. 2023, 1, 1114–1121.
(118) Zhou, W.; Apkarian, R.; Wang, Z. L.; Joy, D. Fundamentals of Scanning Electron Microscopy (SEM). In Scanning Microscopy for Nanotechnology: Techniques and Applications, Zhou, W., Wang, Z. L. Eds.; Springer New York, 2007; pp 1–40.
(119) De Mello, J. C.; Wittmann, H. F.; Friend, R. H. An Improved Experimental Determination of External Photoluminescence Quantum Efficiency. Adv. Mater. 1997, 9, 230–232.
(120) Kubicki, A. A.; Bojarski, P.; Grinberg, M.; Sadownik, M.; Kukliński, B. Time-Resolved Streak Camera System with Solid State Laser and Optical Parametric Generator in Different Spectroscopic Applications. Opt. Commun. 2006, 263, 275–280.
(121) Majewska, N.; Muñoz, A.; Liu, R. S.; Mahlik, S. Influence of Chemical and Mechanical Pressure on the Luminescence Properties of Near-Infrared Phosphors. Chem. Mater. 2023, 35, 4680–4690.
(122) Barzowska, J.; Lesniewski, T.; Mahlik, S.; Seo, H. J.; Grinberg, M. KMgF3:Eu2+ as a New Fluorescence-Based Pressure Sensor for Diamond Anvil Cell Experiments. Opt. Mater. 2018, 84, 99–102.
(123) Shen, G.; Mao, H. K. High-Pressure Studies with X-Rays Using Diamond Anvil Cells. Rep. Prog. Phys. 2016, 80, 016101.
(124) Mao, H.; Xu, J. A.; Bell, P. Calibration of the Ruby Pressure Gauge to 800 kbar under Quasi‐Hydrostatic Conditions. Res. Solid Earth 1986, 91, 4673–4676.
(125) Miao, S.; Liang, Y.; Shi, R.; Wang, W.; Li, Y.; Wang, X. J. Broadband Short-Wave Infrared-Emitting MgGa2O4:Cr3+,Ni2+ Phosphor with Near-Unity Internal Quantum Efficiency and High Thermal Stability for Light-Emitting Diode Applications. ACS Appl. Mater. Interfaces 2023, 15, 32580–32588.
(126) Rajendran, V.; Fang, M. H.; Huang, W. T.; Majewska, N.; Lesniewski, T.; Mahlik, S.; Leniec, G.; Kaczmarek, S. M.; Pang, W. K.; Peterson, V. K.; Lu, K. M.; Chang, H.; Liu, R. S. Chromium Ion Pair Luminescence: a Strategy in Broadband Near-Infrared Light-Emitting Diode Design. J. Am. Chem. Soc. 2021, 143, 19058–19066.
(127) Tomono, Y.; Kato, T.; Tanokura, Y. EPR Spectra from Ni2+ Pairs in KZnF3 Crystals. J. Phys. Soc. Jpn. 1984, 53, 773–779.
(128) Hsu, J. Y.; Chung, R. J.; Kuo, Y. L.; Lin, C. C.; Majewska, N.; Kreft, D.; Mahlik, S.; Fang, M. H. Concentration‐Induced Hetero‐Valent Partial‐Inverse Occupation of Infrared Phosphor. Adv. Opt. Mater. 2023, 11, 2300121.
(129) Majewska, N.; Tsai, Y. T.; Zeng, X. Y.; Fang, M. H.; Mahlik, S. Advancing Near-Infrared Light Sources: Enhancing Chromium Emission through Cation Substitution in Ultra-Broadband Near-Infrared Phosphors. Chem. Mater. 2023, 35, 10228–10237.
(130) Kuleshov, N.; Mikhailov, V.; Scherbitsky, V.; Minkov, B.; Glynn, T.; Sherlock, R. Luminescence Study of Cr4+-Doped Silicates. Opt. Mater. 1995, 4, 507–513.
(131) La Macchia, G.; Aquilante, F.; Veryazov, V.; Roos, B. O.; Gagliardi, L. Bond Length and Bond Order in One of the Shortest Cr−Cr Bonds. Inorg. Chem. 2008, 47, 11455–11457.
(132) Szymczak, H.; Wardzynska, M.; Mylnikova, I. Optical Spectrum of Cr3+ in the Spinel LiGa5O8. J. Phys. C: Solid State Phys. 1975, 8, 3937.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92847-
dc.description.abstract近紅外光因其特殊性質,於各領域中展現巨大潛力。螢光粉轉換發光二極體為現今廣泛應用之光源,因其具可調控放射帶與放光波長、高效率、便攜帶性等優勢,造就其於近紅外光源之極大競爭力,故發展可應用於螢光粉轉換發光二極體之近紅外光螢光粉為本研究之目標。
本研究第一部分致力於研究不同尖晶石結構之近紅外光螢光粉,藉Cr3+/Ni2+共摻雜之MgAl2O4–MgGa2O4–Mg2SnO4固態溶液,探討自部分反尖晶石至正尖晶石與反尖晶石之結構轉換過程與近紅外光放光性質。此部分著重探討尖晶石結構中Cr3+團簇與Ni2+放光於結構轉換之變化,並引入能量轉換與化學壓力之概念,於拓展放光至近紅外光二區之同時,進一步調控放光波長之紅移與藍移,最終,開發相異波長之近紅外光二區光源可利用於生醫影像之應用。
本研究第二部分致力於研究Cr3+單摻雜類尖晶石結構LiGa5O8之晶體結構與近紅外光性質。藉一系列相異摻雜濃度之LiGa5–xO8:xCr3+螢光粉,探討高濃度活化劑摻雜下離子間作用力變化,除離子對與離子團簇外,離子對間之內部價電荷轉移機制被揭示為近紅外光二區放光之來源,故此部分藉結構、放光性質及機制分析探究近紅外光之生成原因。
本研究之新穎性為系統性研究不同種類之尖晶石結構,提供兩相異機制作為二區近紅外光之放光策略。第一部分藉雙摻雜活化劑進行能量轉移,第二部分藉高濃度單一摻雜活化劑促使內部價電荷轉移之躍遷。除螢光粉之合成外,藉一系列長程與短程之結構精修、放光性質鑑定、穩定性測試等,分析性能與探討機制,最終進行封裝測試揭示其應用性,證實近紅外光光源之巨大發展潛力。
zh_TW
dc.description.abstractNear-infrared (NIR) light has great potential in various fields due to its special properties, so it is necessary to develop an NIR light source. Phosphor-converted light-emitting diodes (pc-LED) are widely used nowadays since their advantages include adjustable emission wavelengths, high efficiency, and portability. Therefore, creating the NIR phosphor for the pc-LED application is the goal of this research.
The first part of this research is devoted to developing NIR phosphors with different spinel structures. This work focuses on Cr3+/Ni2+-doped MgAl2O4–MgGa2O4–Mg2SnO4 spinel-type solid solutions to investigate the dynamic change of structure and luminescence properties. By the cation substitution strategy, the chemical pressure and energy transfer (ET) induce the tunable emission in the NIR region. Finally, the NIR pc-LED is fabricated and demonstrated as the light source for bio-image and anti-counterfeiting applications.
The second part of this research is dedicated to studying the heavy Cr3+-doped spinel-like LiGa5O8 phosphor. This work focuses on investigating the relation between luminescence properties with different Cr dopant interactions. The NIR-II emission is confirmed to undergo the intervalence charge transfer (IVCT) mechanism and successfully explore the way for Cr3+ single-doped phosphor to reach the dual-emission cover in both the NIR-I and II regions.
The novelty of this research is to systematically study different types of spinel structures and provide two different mechanisms as strategies for tuning NIR emission, in which the first part applies energy transfer and the second part applies intervalence charge transfer transition.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-02T16:16:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-02T16:16:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
誌謝 II
摘要 III
Abstract IV
目次 V
圖次 VIII
表次 XV
第一章 緒論 1
1.1 光 1
1.1.1 紅外光 2
1.1.2 發光之種類 4
1.2 固態發光材料(Solid-State Lighting; SSL) 6
1.2.1 發光二極體(Light-Emitting Diodes; LEDs) 7
1.2.2 無機螢光粉(Inorganic Phosphor) 8
1.3 螢光粉之發光機制與原理 10
1.3.1 賈布朗斯基圖(Jabłoński Diagram) 10
1.3.2 法蘭克–康頓原理(Franck–Condon Principle) 12
1.3.3 電子–聲子耦合效應(Electron–Phonon Coupling)與斯托克斯位移(Stokes Shift) 13
1.3.4 淬滅效應(Quenching Effect) 16
1.4 活化劑之選擇 18
1.4.1 Cr3+/ Cr4+活化劑之特性 20
1.4.2 Ni2+活化劑之特性 22
1.5 主體晶格結構之選擇 23
1.5.1 尖晶石結構 24
1.5.2 尖晶石結構近紅外光螢光粉 25
1.6 調控螢光粉發光之策略 28
1.6.1 晶體場理論(Crystal Field Theory; CFT) 29
1.6.2 田邊–菅野圖(Tanabe–Sugano Diagram) 31
1.6.3 能量轉移(Energy Transfer) 34
1.6.4 內部價電荷轉移(Intervalence Charge Transfers; IVCT) 37
1.7 研究動機與目的 38
第二章 實驗步驟與儀器分析原理 42
2.1 化學藥品 42
2.2 尖晶石結構之近紅外光螢光粉之合成方法 43
2.2.1 MgAl2O4–MgGa2O4–Mg2SnO4固態溶液螢光粉之設計與合成 43
2.2.2 LiGa5O8:Cr3+螢光粉之設計與合成 46
2.3 儀器分析 48
2.3.1 結構鑑定 48
2.3.2 發光性質鑑定 61
2.3.3 封裝測試與應用 67
第三章 結果與討論 69
3.1 尖晶石結構MgAl2O4–MgGa2O4–Mg2SnO4固態溶液螢光粉 69
3.1.1 MgAl2O4–MgGa2O4–Mg2SnO4固態溶液螢光粉之結構分析 70
3.1.2 MgAl2O4–MgGa2O4–Mg2SnO4固態溶液螢光粉之螢光性質 88
3.1.3 MgAl2O4–MgGa2O4–Mg2SnO4固態溶液螢光粉之能量轉移機制 94
3.1.4 MgAl2O4–MgGa2O4–Mg2SnO4固態溶液螢光粉之熱特性 98
3.1.5 MgAl2O4–MgGa2O4–Mg2SnO4固態溶液螢光粉之變壓光譜 104
3.1.6 MgAl2O4–MgGa2O4–Mg2SnO4固態溶液螢光粉之實際應用 106
3.2 類尖晶石結構LiGa5−xO8:Cr3+螢光粉 109
3.2.1 LiGa5O8:Cr3+螢光粉之結構分析 110
3.2.2 LiGa5O8:Cr3+螢光粉之螢光性質 122
3.2.3 LiGa5O8:Cr3+螢光粉之熱特性 127
3.2.4 LiGa5O8:Cr3+螢光粉之變壓光譜 131
3.2.5 LiGa5O8:Cr3+螢光粉之發光機制 132
3.2.6 LiGa5O8:Cr3+螢光粉之實際應用 134
第四章 結論 136
參考文獻 138
-
dc.language.isozh_TW-
dc.subject螢光粉zh_TW
dc.subject近紅外光zh_TW
dc.subject能量轉移zh_TW
dc.subject內部價電荷轉移zh_TW
dc.subjectnear-infrareden
dc.subjectenergy transferen
dc.subjectphosphorsen
dc.subjectintervalence charge transferen
dc.title調控尖晶石型態螢光粉之結構與近紅外光放光特性zh_TW
dc.titleTuning the Structural and Near-Infrared Luminescent Properties of Spinel-Type Phosphorsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊吉水;陳錦明;廖秋峯;汪建民zh_TW
dc.contributor.oralexamcommitteeJye-Shane Yang;Jin-Ming Chen;Chiou-Feng Liaw;Jian-Ming Wangen
dc.subject.keyword螢光粉,近紅外光,能量轉移,內部價電荷轉移,zh_TW
dc.subject.keywordphosphors,near-infrared,energy transfer,intervalence charge transfer,en
dc.relation.page153-
dc.identifier.doi10.6342/NTU202401300-
dc.rights.note未授權-
dc.date.accepted2024-06-25-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
12.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved