Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92846
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈俊嚴zh_TW
dc.contributor.advisorChun-Yen Shenen
dc.contributor.author顏逸儒zh_TW
dc.contributor.authorYi-Ju Yenen
dc.date.accessioned2024-07-02T16:15:52Z-
dc.date.available2024-07-03-
dc.date.copyright2024-07-02-
dc.date.issued2024-
dc.date.submitted2024-06-25-
dc.identifier.citation[1] F. Auger and P. Flandrin. Improving the readability of time-frequency and time-scale representations by the reassignment method. IEEE Transactions on signal processing, 43(5):1068–1089, 1995.
[2] R. Behera, S. Meignen, and T. Oberlin. Theoretical analysis of the second-order synchrosqueezing transform. Applied and Computational Harmonic Analysis, 45(2):379–404, 2018.
[3] B. Boashash and P. O’Shea. Polynomial wigner-ville distributions and their relationship to time-varying higher order spectra. IEEE Transactions on Signal Processing, 42(1):216–220, 1994.
[4] Z. Chen and H.-T. Wu. Disentangling modes with crossover instantaneous frequencies by synchrosqueezed chirplet transforms, from theory to application. Applied and Computational Harmonic Analysis, 62:84–122, 2023.
[5] L. Cohen. Time-frequency analysis, volume 778. Prentice hall New Jersey, 1995.
[6] I. Daubechies, J. Lu, and H.-T. Wu. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Applied and computational harmonic analysis, 30(2):243–261, 2011.
[7] I. Daubechies, Y. Wang, and H.-T. Wu. Conceft: Concentration of frequency and time via a multitapered synchrosqueezed transform. Phil. Trans. R. Soc. A., 374(2065):20150193, Apr. 2016.
[8] K. R. Fitz and S. A. Fulop. A unified theory of time-frequency reassignment. arXiv preprint arXiv:0903.3080, 2009.
[9] P. Flandrin, P. Gonçalvès, and G. Rilling. Detrending and denoising with empirical mode decompositions. In 2004 12th European Signal Processing Conference, pages 1581–1584, 2004.
[10] P. Li and Q.-H. Zhang. If estimation of overlapped multicomponent signals based on viterbi algorithm. Circuits, Systems, and Signal Processing, 39:3105–3124, 2020.
[11] S. Mann and S. Haykin. Time-frequency perspectives: The chirplet transform. IEEE ICASSP-92, San Francisco, 1992.
[12] S. Mann and S. Haykin. The chirplet transform: Physical considerations. IEEE Transactions on Signal Processing, 43(11):2745–2761, 1995.
[13] S. Meignen, N. Laurent, and T. Oberlin. One or two ridges? an exact mode separation condition for the gabor transform. IEEE Signal Processing Letters, 29:2507–2511, 2022.
[14] S. Meignen, T. Oberlin, and S. McLaughlin. A new algorithm for multicomponent signals analysis based on synchrosqueezing: With an application to signal sampling and denoising. IEEE transactions on Signal Processing, 60(11):5787–5798, 2012.
[15] D. J. Nelson. Instantaneous higher order phase derivatives. Digital Signal Processing, 12(2-3):416–428, 2002.
[16] T. Oberlin and S. Meignen. The second-order wavelet synchrosqueezing transform. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3994–3998. IEEE, 2017.
[17] T. Oberlin, S. Meignen, and V. Perrier. Second-order synchrosqueezing transform or invertible reassignment? towards ideal time-frequency representations. IEEE Transactions on Signal Processing, 63(5):1335–1344, 2015.
[18] O. Pele and M. Werman. A linear time histogram metric for improved sift matching. pages 495–508, Oct. 2008.
[19] O. Pele and M. Werman. Fast and robust earth mover’s distances. In 2009 IEEE 12th International Conference on Computer Vision, pages 460–467, Sept. 2009.
[20] D.-H. Pham and S. Meignen. High-order synchrosqueezing transform for multi-component signals analysis—with an application to gravitational-wave signal. IEEE Transactions on Signal Processing, 65(12):3168–3178, 2017.
[21] G. Rilling, P. Flandrin, P. Goncalves, et al. On empirical mode decomposition and its algorithms. In IEEE-EURASIP workshop on nonlinear signal and image processing, volume 3, pages 8–11. Grado: IEEE, 2003.
[22] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision, 40(2):99–121, Nov. 2000.
[23] L. Stanković. A measure of some time–frequency distributions concentration. Signal Processing, 81(3):621–631, 2001.
[24] H.-T. Wu. Current state of nonlinear-type time–frequency analysis and applications to high-frequency biomedical signals. Current Opinion in Systems Biology, 23:8–21, 2020.
[25] X. Zhu, H. Yang, Z. Zhang, J. Gao, and N. Liu. Frequency-chirprate reassignment. Digital Signal Processing, 104:102783, 2020.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92846-
dc.description.abstract本研究專注於分析具有重疊瞬時頻率(IF)的多成分信號。傳統方法,如短時傅立葉變換(STFT)、經驗模態分解(EMD)等,將在目標信號具有重疊瞬時頻率時失效,因為無法將信號適當地分解。這個問題最初是利用 chirplet轉換(CT)來解決的,然而,由於重疊部分的能量衰減速率較低,導致會有顯著的交叉項的影響,因此添加其他步驟是必要的。通過加入同步擠壓步驟,即同步擠壓chirplet轉換(SCT),可以使時頻-啁啾空間中的能量更加聚集。雖然SCT在啁啾信號的疊加中表現良好,但我們發現它在高啁啾變化率的信號上出現錯誤,這是由於對瞬時頻率的錯誤估計。相對應地,信號的曲線在某個時間點斷裂,這意味著能量不夠集中。在本文提出了對 CT的後處理的改進,主要目標是修正 SCT中引入的估計,並進行高階同步擠壓 chirplet轉換。所提出的方法在面對啁啾變化率更大的多成分信號時減少了錯誤的估計。提供了新的重新分布運算子的理論分析,包括表示的每個導數的近似值和成分的點估計。提出了一些高啁啾變化率合成信號的數值實驗,以驗證所提出的高階SCT的有效性。zh_TW
dc.description.abstractThis research centers on analyzing signals that contain multiple components with overlapping instantaneous frequencies (IF). The classic method, like the short-time Fourier transforms (STFT), empirical modes decomposition (EMD), etc, will be illness when the target signals have the overlapping IF as one can not separate the signal properly. This problem was initially solved with the chirplet transform (CT), however, due to the low rate of decay at the cross part, the effect of the cross terms is obvious, so adding the other technique is necessary. By adding the synchrosqueezing step, which is called the synchrosqueezed chirplet transform (SCT), the ridge of the representation in time-frequency-chirp space can be sharpened. Although the SCT performed well in the superposition of the chirp signal, we found that it went wrong with the high chirp modulation signal due to the incorrect estimation of the IF. The curve corresponding to the signal collapses at some time instant, which means that the energy is not concentrated enough. In this paper, we present enhancements to the post-transformation of the Chirplet Transform (CT). The primary objective is to refine the estimation introduced in the Synchrosqueezed Chirplet Transform (SCT) and implement the high-order synchrosqueezed chirplet transform. The proposed method mitigates estimation errors when dealing with a wider range of chirp-modulated multi-component signals. The theoretical analysis of the new reassignment ingredients is provided, including the approximation of each derivative of the representation, and the point estimate of the ingredients. Numerical experiments on high chirp modulation synthetic signals are conducted to validate the effectiveness of the proposed high-order Synchrosqueezed Chirplet Transform (HSCT).en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-02T16:15:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-02T16:15:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 iii
Abstract v
Contents vii
List of Figures ix
List of Tables xi
Chapter 1 Introduction 1
Chapter 2 Preliminary 5
2.1 Classic Time-Frequency Analysis . . . . . . . . . . . . . . . . . . . 5
2.2 The Synchrosqueezing Transform (SST) . . . . . . . . . . . . . . . . 7
2.3 The Chirplet Transform (CT) . . . . . . . . . . . . . . . . . . . . . . 9
Chapter 3 High-Order Synchrocqueezed Chirplet Transform 11
3.1 Definition of High-Order Synchrocqueezed Chirplet Transform (HSCT) 11
3.2 Theoretical Analysis of the Proposed Method . . . . . . . . . . . . . 14
3.2.1 Computation for Implementation . . . . . . . . . . . . . . . . . . . 17
Chapter 4 The simulations results 19
4.1 The Results for Large Chirp-Rate Variation . . . . . . . . . . . . . . 20
4.2 Separating Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Degenerated into the SCT. . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 More than Two Modes. . . . . . . . . . . . . . . . . . . . . . . . . . 27
Chapter 5 Main Theorem 3.2.3 29
5.1 Proof of theorem 3.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . 29
Chapter 6 Conclusion and Future Works 45
References 47
Appendix A — Metrics for Implement 51
A.1 Rényi Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.2 Earth mover’s distance . . . . . . . . . . . . . . . . . . . . . . . . . 52
-
dc.language.isoen-
dc.title多成分信號分析之高階同步壓縮 Chirplet 轉換zh_TW
dc.titleHigh-Order Synchrosqueezed Chirplet Transforms for Multicomponent Signal Analysisen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee崔茂培;丁建均zh_TW
dc.contributor.oralexamcommitteeMao-Pei Tsui;Jian-Jiun Dingen
dc.subject.keyword時頻分析,同步壓縮轉換,Chirplet轉換,多成分信號,重合順時頻率,zh_TW
dc.subject.keywordTime-frequency analysis,Synchrosqueezing transform,Chirplet transform,Multi-component signals,Crossover instantaneous frequency,en
dc.relation.page52-
dc.identifier.doi10.6342/NTU202401305-
dc.rights.note未授權-
dc.date.accepted2024-06-26-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
1.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved