請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92840完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉如熹 | zh_TW |
| dc.contributor.advisor | Ru-Shi Liu | en |
| dc.contributor.author | 蕭宇軒 | zh_TW |
| dc.contributor.author | Yu-Hsuan Hsiao | en |
| dc.date.accessioned | 2024-07-02T16:14:08Z | - |
| dc.date.available | 2024-07-03 | - |
| dc.date.copyright | 2024-07-02 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-06-25 | - |
| dc.identifier.citation | 參考文獻
(1) Nogues, G.; Rauschenbeutel, A.; Osnaghi, S.; Brune, M.; Raimond, J.-M.; Haroche, S. Seeing a Single Photon without Destroying it. Nature 1999, 400, 239–242. (2) Browne, M. E. Physics for Engineering and Science; McGraw-Hill Education: New York, 2013. (3) Hemmer, E.; Benayas, A.; Légaré, F.; Vetrone, F. Exploiting the Biological Windows: Current Perspectives on Fluorescent Bioprobes Emitting above 1000 nm. Nanoscale Horiz. 2016, 1, 168–184. (4) Liu, B. M.; Gu, S. M.; Huang, L.; Zhou, R. F.; Zhou, Z.; Ma, C. G.; Zou, R.; Wang, J. Ultra-Broadband and High-Efficiency Phosphors to Brighten NIR-II Light Source Applications. Cell Rep Phys Sci. 2022, 3. 101078. (5) Miao, S.; Liang, Y.; Zhang, Y.; Chen, D.; Wang, X. J. Blue LED‐Pumped Broadband Short‐Wave Infrared Emitter Based on LiMgPO4:Cr3+,Ni2+ Phosphor. Adv. Mater. Technol. 2022, 7, 2200320. (6) Rajendran, V.; Chen, K. C.; Huang, W. T.; Kamiński, M.; Grzegorczyk, M.; Mahlik, S.; Leniec, G.; Lu, K. M.; Wei, D. H.; Chang, H. Unraveling Luminescent Energy Transfer Pathways: Futuristic Approach of Miniature Shortwave Infrared Light-Emitting Diode Design. ACS Energy Lett. 2023, 8, 2395–2400. (7) Rajendran, V.; Huang, W. T.; Chen, K. C.; Wei, D. H.; Chang, H.; Liu, R. S. Shortwave Infrared Luminescence of Tetravalent Chromium and Divalent Nickel: Phosphor Design Principles and Applications. ACS Appl. Opt. Mater. 2023, 1, 1063–1079. (8) Huang, W. T.; Chen, K. C.; Huang, M. H.; Liu, R. S. Tunable Spinel Structure Phosphors: Dynamic Change in Near‐Infrared Windows and Their Applications. Adv. Opt. Mater. 2023, 11, 2301166. (9) Yuan, L.; Jin, Y.; Wu, H.; Deng, K.; Qu, B.; Chen, L.; Hu, Y.; Liu, R. S. Ni2+-Doped Garnet Solid-Solution Phosphor-Converted Broadband Shortwave Infrared Light-Emitting Diodes toward Spectroscopy Application. ACS Appl. Mater. Interfaces 2022, 14, 4265–4275. (10) Yuan, L.; Jin, Y.; Zhu, D.; Mou, Z.; Xie, G.; Hu, Y. Ni2+-Doped Yttrium Aluminum Gallium Garnet Phosphors: Bandgap Engineering for Broad-Band Wavelength-Tunable Shortwave-Infrared Long-Persistent Luminescence and Photochromism. ACS Sustain. Chem. Eng. 2020, 8, 6543–6550. (11) Liu, B. M.; Guo, X. X.; Cao, L. Y.; Huang, L.; Zou, R.; Zhou, Z.; Wang, J. A High-Efficiency Blue-LED-Excitable NIR-II-Emitting MgO:Cr3+,Ni2+ Phosphor for Future Broadband Light Source toward Multifunctional NIR Spectroscopy Applications. J. Chem. Eng. 2023, 452, 139313. (12) Miao, S.; Liang, Y.; Zhang, Y.; Chen, D.; Wang, X. J. Broadband Short-Wave Infrared Light-Emitting Diodes Based on Cr3+-Doped LiScGeO4 Phosphor. ACS Appl. Mater. Interfaces 2021, 13, 36011–36019. (13) Diao, S.; Blackburn, J. L.; Hong, G.; Antaris, A. L.; Chang, J.; Wu, J. Z.; Zhang, B.; Cheng, K.; Kuo, C. J.; Dai, H. Fluorescence Imaging in vivo at Wavelengths Beyond 1500 nm. Angew. Chem. Int. Ed. 2015, 127, 14971–14975. (14) Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H. Ultrasensitive Solution-Cast Quantum Dot Photodetectors. Nature 2006, 442, 180–183. (15) Zheng, Y.; Zhu, X. Recent Progress in Emerging Near-Infrared Emitting Materials for Light-Emitting Diode Applications. Org. Mater. 2020, 2, 253–281. (16) Liu, C. N.; Chang, K. C.; Tsai, C. L.; Cheng, W. C.; Shih, T. T.; Huang, S. L.; Cheng, W. H. 17-dB Net Gain of Broadband Single-Mode Cr-Doped Crystalline Core Fiber Fabricated by Small Core. IEEE Photonics J. 2023, 15, 1–6. (17) Yeh, S. M.; Huang, S. L.; Chiu, Y. J.; Taga, H.; Huang, P. L.; Huang, Y. C.; Lu, Y. K.; Wu, J. P.; Wang, W. L.; Kong, D. M. Broadband Chromium-Doped Fiber Amplifiers for Next-Generation Optical Communication Systems. J. Light. Technol. 2012, 30, 921–927. (18) Liu, C. N.; Li, J. W.; Tung, Y. H.; Yang, C. C.; Cheng, W. C.; Huang, S. L.; Cheng, W. H. Enhancement of Tetrahedral Chromium (Cr4+) Concentration for High-Gain in Single-Mode Crystalline Core Fibers. IEEE Photo. J. 2020, 12, 1–11. (19) Zhang, Q.; Wang, Q.; Xu, X. P.; Liu, J. W.; Lu, X. M.; Huang, W.; Fan, Q. L. Diketopyrrolopyrrole Derivatives-Based NIR-II Fluorophores for Theranostics. Dyes and Pigments 2021, 193, 109480. (20) Ding, F.; Zhan, Y.; Lu, X.; Sun, Y. Recent Advances in Near-Infrared II Fluorophores for Multifunctional Biomedical Imaging. Chem. Sci. 2018, 9, 4370–4380. (21) Kwan, A.; Dudley, J.; Lantz, E. Who Really Discovered Snell's Law? Phys. World 2002, 15, 64. (22) Imani, R.; Cuellar, G. H. Introductory Chapter: Optical Fibers; IntechOpen: London, 2020. (23) Yoneda, E.; Kikushima, K.; Tsuchiya, T.; Suto, K.-I. Erbium-Doped Fiber Amplifier for Video Distribution Networks. IEEE J. Sel. Areas Commun. 1990, 8, 1249–1256. (24) Desurvire, E.; Zyskind, J. L.; Giles, C. R. Design Optimization for Efficient Erbium-Doped Fiber Amplifiers. J. Light. Technol. 1990, 8, 1730–1741. (25) Cheng, C. A Global Design of an Erbium-Doped Fiber and an Erbium-Doped Fiber Amplifier. Opt. Laser Technol. 2004, 36, 607–612. (26) Krishnan, M.; Bastien, S. P.; Sunak, H. R.; Kalomiris, V. E. Pr3+-Doped Fluoride Fiber Amplifiers: Optimum Design Considerations. In Phys. Simulation of Optoelectronic Devices, 1992, 1679, 212–219. (27) Kasamatsu, T.; Yano, Y.; Sekita, H. 1.50-µm-Band Gain-Shifted Thulium-Doped Fiber Amplifier with 1.05-and 1.56-µm Dual-Wavelength Pumping. Opt. Lett. 1999, 24, 1684–1686. (28) Bufetov, I. A.; Melkumov, M. A.; Firstov, S. V.; Riumkin, K. E.; Shubin, A. V.; Khopin, V. F.; Guryanov, A. N.; Dianov, E. M. Bi-Doped Optical Fibers and Fiber Lasers. IEEE J. Sel. Top. in Quant. Electron. 2014, 20, 111–125. (29) Firstov, S. V.; Alyshev, S. V.; Riumkin, K. E.; Khopin, V. F.; Guryanov, A. N.; Melkumov, M. A.; Dianov, E. M. A 23-dB Bismuth-Doped Optical Fiber Amplifier for a 1700-nm Band. Sci. Rep. 2016, 6, 28939. (30) Batagelj, B.; Erzen, V.; Tratnik, J.; Naglic, L.; Bagan, V.; Ignatov, Y.; Antonenko, M. Optical Access Network Migration from GPON to XG-PON. In ACCESS 2012: The Third International Conference on Access Networks, 2012, 62–67. (31) Liu, C. N.; Liu, C. M.; Huang, S. L.; Cheng, W. H. Broadband Single-Mode Cr-Doped Crystalline Core Fiber with Record 11-dB Net Gain by Precise Laser-Heated Pedestal Growth and Tetrahedral Chromium Optimization. J. Light. Technol. 2021, 39, 3531–3538. (32) Liu, C. N.; Li, J. W.; Yang, C. C.; Tu, C.; Cheng, W. H. Higher-Gain Broadband Single-Mode Chromium-Doped Fiber Amplifiers by Tetrahedral-Chromium Enhancement. In Opt. Fiber Commun. Conf. Exhib. 2019, Optica Publishing Group: p Th2A. 14. (33) Chang, K. C.; Cheng, W. C.; Liu, C. N.; Tu, C.; Shih, T. T.; Huang, S. L.; Cheng, W. H. Record Gain of 300-nm Broadband Single-Model Cr-Doped Crystalline Fiber Employing Novel Growth of Smaller Core. In Next-Generation Optical Communication: Components, Sub-Systems, and Systems XI, 2022, 12028, 112–115. (34) Chang, K. C.; Tsai, C. L.; Cheng, W. C.; Liu, C. N.; Shih, T. T.; Huang, S. L.; Tu, C. W.; Cheng, W. H. Record Gain of 18-dB for Broadband Single-Model Cr-Doped Crystalline Core Fiber by Small Core Diameter. In Opt. Fiber Commun. Conf. Exhib., 2023, 1–3. (35) Shionoya, S.; Yen, W. M.; Yamamoto, H. Phosphor Handbook; CRC press: Florida, 2018. (36) Pan, Y.; Wu, M.; Su, Q. Tailored Photoluminescence of YAG: Ce Phosphor through Various Methods. J. Phys. Chem. Sol. 2004, 65, 845–850. (37) Shi, H.; Zhu, C.; Huang, J.; Chen, J.; Chen, D.; Wang, W.; Wang, F.; Cao, Y.; Yuan, X. Luminescence Properties of YAG:Ce,Gd Phosphors Synthesized under Vacuum Condition and Their White LED Performances. Opt. Mater. Exp. 2014, 4, 649–655. (38) Kinsman, K. M.; McKittrick, J.; Sluzky, E.; Hesse, K. Phase Development and Luminescence in Chromium‐Doped Yttrium Aluminum Garnet (YAG:Cr) Phosphors. J. Am. Ceram. Soc. 1994, 77, 2866–2872. (39) Deng, Y.; Zhu, F. M.; Gao, Y. Qiu, J. B. Strategy of Charge Compensation for High-Performance Ni2+-Activated MgAl2O4 Spinel Near-Infrared Phosphor Synthesis via the Sol–Gel Combustion Method. Inorg. Chem. 2024, 63, 6555–6563. (40) Lin, Y.; Wu, H.; Wang, C.; Zhang, J.; Yao, Q.; Wu, S.; Hu, Y. Co-Precipitation Synthesis of ZnAl2O4:Cr3+ Phosphor for Better Light Penetration in pc-LED. J. Mater. Sci.: Mater. Electron. 2022, 33, 19871–19883. (41) Liu, B. M.; Guo, X. X.; Huang, L.; Zhou, R. F.; Zou, R.; Ma, C. G.; Wang, J. A Super‐Broadband NIR Dual‐Emitting Mg2SnO4:Cr3+,Ni2+ Phosphor for Ratiometric Phosphor‐Converted NIR Light Source Applications. Adv. Mater. Technol. 2023, 8, 2201181. (42) Zhang, Y.; Li, X.; Lai, Z.; Zhang, R.; Lewis, E.; Azmi, A. I.; Gao, Z.; Lu, X.; Chu, Y.; Liu, Y. Largest Enhancement of Broadband Near-Infrared Emission of Ni2+ in Transparent Nanoglass Ceramics: Using Nd3+ as a Sensitizer and Yb3+ as an Energy-Transfer Bridge. J. Phys. Chem. C 2019, 123, 10021–10027. (43) Suzuki, T.; Arai, Y.; Ohishi, Y. Quantum Efficiencies of Near-Infrared Emission from Ni2+-Doped Glass-Ceramics. J. Lumin. 2008, 128, 603–609. (44) Yu, G.; Wang, W.; Jiang, C. Linear Tunable NIR Emission via Selective Doping of Ni2+ Ion into ZnX2O4 (X= Al,Ga,Cr) Spinel Matrix. Ceram. Inter. 2021, 47, 17678–17683. (45) Yang, Z.; Zhao, Y.; Zhou, Y.; Qiao, J.; Chuang, Y. C.; Molokeev, M. S.; Xia, Z. Giant Red‐Shifted Emission in (Sr, Ba) Y2O4: Eu2+ Phosphor toward Broadband Near‐Infrared Luminescence. Adv. Funct. Mater. 2022, 32, 2103927. (46) Gupta, I.; Singh, S.; Bhagwan, S.; Singh, D. Rare Earth (RE) Doped Phosphors and Their Emerging Applications: A review. Ceram. Int. 2021, 47, 19282–19303. (47) Jaffé, H. H.; Miller, A. L. The Fates of Electronic Excitation Energy. J. Chem. Educ. 1966, 43, 469. (48) Lax, M. The Franck‐Condon Principle and Its Application to Crystals. J. Chem. Phys. 1952, 20, 1752–1760. (49) Marceddu, M. Photoluminescence Properties of Lanthanide Doped Wide Gap Compounds of Interest in Photonics. Ph.D. Thesis, University of Cagliari, Sardinia, Italy, 2008. (50) Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Springer: New York, NY, 2006. (51) Kitai, A. Luminescent Materials and Applications; John Wiley & Sons: West Sussex, 2008. (52) De Jong, M.; Seijo, L.; Meijerink, A.; Rabouw, F. T. Resolving the Ambiguity in the Relation Between Stokes Shift and Huang–Rhys Parameter. Phys. Chem. Chem. Phys. 2015, 17, 16959–16969. (53) Daiyu, H. Application of Infrared Phosphor in Medical Diagostic (Invite Talk at Global Phosphor Summit 2017); 2017. (54) Chang, C. Y.; Huang, M. H.; Chen, K. C.; Huang, W. T.; Kamiński, M.; Majewska, N.; Klimczuk, T. Chen, J. H.; Cherng, D. H.; Lu, K. M.; Pang, W. K.; Peterson, V. K.; Mahlik, S.; Leniec, G.; Liu, R. S. Ultrahigh Quantum Efficiency Near-Infrared-II Emission Achieved by Cr3+ Clusters to Ni2+ Energy Transfer. Chem. Mater. 2024. 36. 3941–3948. (55) Wang, C.; Zhang, Y.; Han, X.; Hu, D.; He, D.; Wang, X.; Jiao, H. Energy Transfer Enhanced Broadband Near-Infrared Phosphors: Cr3+/Ni2+ Activated ZnGa2O4–Zn2SnO 4 Solid Solutions for the Second NIR Window Imaging. J. Mater. Chem. 2021, 9, 4583–4590. (56) Griffith, J.; Orgel, L. Ligand-Field theory. Q. Rev. Chem. Soc. 1957, 11, 381–393. (57) Chen, L.; Zhong, J.; Zeng, L.; Zhao, W. Achieving an Ultra-High Absorption Efficiency in a Monoclinic LiAlP2O7:Cr3+ Near-Infrared Phosphor. J. Lumin. 2023, 263, 120139. (58) Zhu, F.; Gao, Y.; Zhao, C.; Pi, J.; Qiu, J. Achieving Broadband NIR-I to NIR-II Emission in an All-Inorganic Halide Double-Perovskite Cs2NaYCl6:Cr3+ Phosphor for Night Vision Imaging. ACS Appl. Mater. Interfaces. 2023, 15, 39550–39558. (59) Xie, J.; Tian, J.; Jiang, L.; Cao, M.; Zhuang, W. An Efficient and Thermally Stable Cr3+-Activated Y2GdSc2Al2GaO12 Garnet Phosphor for NIR Spectroscopy Applications. Dalton Trans. 2023, 52, 15950–15957. (60) Wu, Z.; Xiang, J.; Chen, C.; Li, Z.; Zhou, X.; Jin, Y.; Guo, C. Multi-Site Occupancy High-Efficient Mg2LaTaO6:Cr3+ Phosphor for Application in Broadband NIR pc-LEDs. Ceram. Int. 2024, 50, 5242–5249. (61) Lin, Q.; Li, Y.; Wu, X.; Peng, J.; You, W.; Huang, D.; Ye, X. Blueshift and Photoluminescence Enhancement in Broadband Near‐Infrared Emitting Phosphor NaSr2(Al/Ga)Ge5O14:Cr3+ Dependence on the Sc/In Substitution. Adv. Opt. Mater. 2024, 12, 2302687. (62) Zhao, F.; Song, Z.; Liu, Q. Advances in Chromium-Activated Phosphors for Near-Infrared Light Sources. Laser Photonics Rev. 2022, 16, 2200380. (63) Cai, H.; Liu, S.; Song, Z.; Liu, Q. Tuning Luminescence from NIR-I to NIR-II in Cr3+-Doped Olivine Phosphors for Nondestructive Analysis. J. Mater. Chem. 2021, 9, 5469–5477. (64) Smith, B. A.; Dabestani, R. T.; Lewis, L. A.; Thompson, C. V.; Collins, C. T.; Aytug, T. Synthesis and Luminescence Characteristics of Cr3+ Doped Y3Al5O12 Phosphors; Oak Ridge National Laboratory: Oak Ridge, TN, 2015. (65) Chen, X.; Wu, Y.; Lu, Z.; Wei, N.; Qi, J.; Shi, Y.; Hua, T.; Zeng, Q.; Guo, W.; Lu, T. Assessment of Conversion Efficiency of Cr4+ Ions by Aliovalent Cation Additives in Cr:YAG Ceramic for Edge Cladding. J. Am. Ceram. Soc. 2018, 101, 5098–5109. (66) Tchougréeff, A. L.; Dronskowski, R. Nephelauxetic Effect Revisited. Inter. J. Quantum Chem. 2009, 109, 2606–2621. (67) Tanabe, Y.; Sugano, S. On the Absorption Spectra of Complex Ions, III the Calculation of the Crystalline Field Strength. J. Phys. Soc. Japan 1956, 11, 864–877. (68) Wood, D.; Imbusch, G.; Macfarlane, R.; Kisliuk, P.; Larkin, D. Optical Spectrum of Cr3+ Ions in Spinels. J. Chem. Phys. 1968, 48, 5255–5263. (69) Brik, M.; Camardello, S.; Srivastava, A.; Avram, N.; Suchocki, A. Spin-Forbidden Transitions in the Spectra of Transition Metal Ions and Nephelauxetic Effect. ECS J. Solid. State Sci. Technol. 2015, 5, R3067. (70) Som, S.; Kunti, A.; Kumar, V.; Kumar, V.; Dutta, S.; Chowdhury, M.; Sharma, S.; Terblans, J.; Swart, H. Defect Correlated Fluorescent Quenching and Electron Phonon Coupling in the Spectral Transition of Eu3+ in CaTiO3 for Red Emission in Display Application. J. Appl. Phys. 2014, 115,193101 (71) Krishnan, A.; Sreeremya, T. S.; Mohamed, A. P.; Hareesh, U. S.; Ghosh, S. Concentration Quenching in Cerium Oxide Dispersions via a Förster Resonance Energy Transfer Mechanism Facilitates the Identification of Fatty Acids. RSC Adv. 2015, 5, 23965–23972. (72) Lin, Y. C.; Bettinelli, M.; Karlsson, M. Unraveling the Mechanisms of Thermal Quenching of Luminescence in Ce3+-Doped Garnet Phosphors. Chem. Mater. 2019, 31, 3851–3862. (73) Markgraf, S. A.; Pangborn, M. F.; Dieckmann, R. Influence of Different Divalent Co-Dopants on the Cr4+ Content of Cr-Doped Y3Al5O12. J. Cryst. Growth 1997, 180, 81–84. (74) Piotrowski, W.; Kinzhybalo, V.; Marciniak, L. Revisiting Y3Al5−xGaxO12 Solid Solutions Doped with Chromium Ions: Effect of Local Symmetry on Thermal Quenching of Cr3+ and Cr4+ Ions. ECS J. Solid. State Sci. Technol. 2023, 12, 066003. (75) Zhou, T.; Zhang, L.; Li, Z.; Wei, S.; Wu, J.; Wang, L.; Yang, H.; Fu, Z.; Chen, H.; Wong, C. Enhanced Conversion Efficiency of Cr4+ Ion in Cr: YAG Transparent Ceramic by Optimizing the Annealing Process and Doping Concentration. J. Alloys Compd. 2017, 703, 34–39. (76) Chen, R.; Jiang, X.; Zhang, T.; Zeng, F.; Yang, W.; Lin, H.; Liu, L.; Li, S.; Li, C.; Su, Z. A White-Emitting CaY2Al4SiO12:Dy3+ Phosphors with Excellent Optical Properties and Thermal Stability by Partially Substituting Y3+ with Gd3+. J. Alloys Compd. 2023, 96, 171558. (77) Wang, Y.; Liu, G.; Xia, Z. NIR‐II Luminescence in Cr4+ Activated CaYGaO4 toward Non‐Invasive Temperature Sensing and Composition Detection. Laser Photonics Rev. 2024, 18, 2300717. (78) Chang, C.; Xu, J.; Jiang, L.; Mao, D.; Ying, W. Luminescence of Long-Lasting CaAl2O4:Eu2+,Nd3+ Phosphor by Co-Precipitation Method. Mater. Chem. Phys. 2006, 98, 509–513. (79) Huang, L.; Zhu, Y.; Zhang, X.; Zou, R.; Pan, F.; Wang, J.; Wu, M. HF-Free Hydrothermal Route for Synthesis of Highly Efficient Narrow-Band Red Emitting Phosphor K2Si1–xF6:xMn4+ for Warm White Light-Emitting Diodes. Chem. Mater. 2016, 28, 1495–1502. (80) Kang, Y. C.; Roh, H. S.; Park, S. B. Preparation of Y2O3: Eu Phosphor Particles of Filled Morphology at High Precursor Concentrations by Spray Pyrolysis. Adv. Mater. 2000, 12, 451–453. (81) Peng, T.; Huajun, L.; Yang, H.; Yan, C. Synthesis of SrAl2O4:Eu,Dy Phosphor Nanometer Powders by Sol–Gel Processes and its Optical Properties. Mater. Chem. Phys. 2004, 85, 68–72. (82) Shikao, S.; Jiye, W. Combustion Synthesis of Eu3+ Activated Y3Al5O12 Phosphor Nanoparticles. J. Alloys Compd. 2001, 327, 82–86. (83) Song, Z.; Liao, J.; Ding, X.; Liu, X.; Liu, Q. Synthesis of YAG Phosphor Particles with Excellent Morphology by Solid State Reaction. J. Cryst. Growth 2013, 365, 24–28. (84) Tamrakar, R. K.; Bisen, D. P.; Brahme, N. Comparison of Photoluminescence Properties of Gd2O3 Phosphor Synthesized by Combustion and Solid State Reaction Method. J. Radiat. Res. Appl. Sci. 2014, 7, 550–559. (85) Wang, T.; Zhang, J.; Zhang, N.; Wang, S.; Wu, B.; Jia, Z.; Tao, X. The Characteristics of High-Quality Yb:YAG Single Crystal Fibers Grown by A LHPG Method and the Effects of Their Discoloration. RSC Adv. 2019, 9, 22567–22575. (86) Pan, F. J.; Zhou, M.; Zhang, J. H.; Zhang, X. J.; Wang, J.; Huang, L.; Kuang. X. J.; Wu, M. M. Double Substitution Induced Tunable Luminescent Properties of Ca3−xYx Sc2−xMgxSi3O12:Ce3+ Phosphors for White LEDs. J. Mater. Chem. C 2016, 4, 5671–5678. (87) Jiang, Y.; Xiu, Z.; Wu, G.; Zhao, J.; Zhou, S.; Luo, X.; Mao, M.; Muhammad, R.; Liu, B.; Bafrooei, H. B. Thz Spectrum, Dodecahedron Distortion and Microwave-Millimeterwave Dielectric Properties of Y3-xBxAl(Oct)2Al(Tet)3-xSixO12 (B = Mg, Ca; x= 0.1-0.5) Garnet-Type Ceramics. SSRN 2022, DOI: 10.2139/ssrn.422126 (88) Eckert, M. Max Von Laue and the Discovery of X‐Ray Diffraction in 1912. Ann. Phys. 2012, 524, A83–A85. (89) Pope, C. G. X-Ray Diffraction and the Bragg Equation. J. Chem. Educ. 1997, 74, 129. (90) Pecharsky, V. K.; Zavalij, P. Y. Fundamentals of Diffraction; Springer, NY, 2003. (91) Toby, B. H.; Von Dreele, R. B. GSAS-II: the Genesis of a Modern Open-Source all Purpose Crystallography Software Package. J. Appl.Crystallogr. 2013, 46, 544–549. (92) Coelho, A. A. TOPAS and TOPAS-Academic: an Optimization Program Integrating Computer Algebra and Crystallographic Objects Written in C++. J. Appl. Crystallogr. 2018, 51, 210–218. (93) Rietveld, H. Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement. Acta Crystallogr. 1967, 22, 151–152. (94) Rietveld, H. M. A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Crystallogr. 1969, 2, 65–71. (95) Sutton, M. A.; Li, N.; Joy, D.; Reynolds, A. P.; Li, X. Scanning Electron Microscopy for Quantitative Small and Large Deformation Measurements Part I: SEM Imaging at Magnifications from 200 to 10,000. Exp. Mech. 2007, 47, 775–787. (96) Das, P. Optical Properties of Low Dimensional Structures Using Cathodoluminescence in a High Resolution Scanning Electron Microscope. Ph.D. Thesis, University of Calcutta, Kolkata, India, 2014. (97) Araneda. A. A. Development of A Methodology for the Determination of A TXRF Spectrometer Sensitivity Curve. ArXiv, 2015, DOI: 10.48550/arXiv.1503.09044. (98) Kowalska, J.; DeBeer, S. The Role of X-Ray Spectroscopy in Understanding the Geometric and Electronic Structure of Nitrogenase. Biochi. Biophys. Acta Mol. Cell Res. 2015, 1853, 1406–1415. (99) Yamamoto, T. Assignment of Pre‐Edge Peaks in K‐edge X‐Ray Absorption Spectra of 3d Transition Metal Compounds: Electric Dipole or Quadrupole? X‐Ray Spectrometry: An International Journal 2008, 37, 572–584. (100) Chae, S. R.; Moon, J.; Yoon, S.; Bae, S.; Levitz, P.; Winarski, R.; Monteiro, P. J. Advanced Nanoscale Characterization of Cement Based Materials Using X-ray Synchrotron Radiation: A Review. Int. J. Concr. Struct. and Mater. 2013, 7, 95–110. (101) Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-Ray Absorption Spectroscopy Using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541. (102) Bleaney, B.; Stevens, K. W. H. Paramagnetic resonance. Rep.Prog. Phys. 1953, 16, 108. (103) Song, E.; Zhou, Y.; Yang, X.-B.; Liao, Z.; Zhao, W.; Deng, T.; Wang, L.; Ma, Y.; Ye, S.; Zhang, Q. Highly Efficient and Stable Narrow-Band Red Phosphor Cs2SiF6: Mn4+ for High-Power Warm White LED Applications. Acs Photonics 2017, 4, 2556–2565. (104) Krishnan, R. S., H.; Terada, H.; Centonze, V.; Herman, B. Development of a Multiphoton Fluorescence Lifetime Imaging Microscopy System Using a Streak Camera. Rev. Sci. Instrum. 2003, 74, 2714–2721. (105) Chen, K. C.; Fang, M. H.; Huang, W. T.; Kamiński, M.; Majewska, N.; Lesniewski, T.; Mahlik, S.; Leniec, G.; Kaczmarek, S. M.; Yang, C. W. Lu, K. M. Sheu. H. S. Liu, R. S. Chemical and Mechanical Pressure-Induced Photoluminescence Tuning via Structural Evolution and Hydrostatic Pressure. Chem. Mater. 2021, 33, 3832–3840. (106) Llovet, X.; Moy, A.; Pinard, P. T.; Fournelle, J. H. Electron Probe Microanalysis: A Review of Recent Developments and Applications in Materials Science and Engineering. Prog. Mater. Sci. 2021, 116, 100673. (107) Momma, K.; Izumi, F. Vesta 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272–1276. (108) Guo, W.; Huang, J.; Lin, Y.; Huang, Q.; Fei, B.; Chen, J.; Wang, W.; Wang, F.; Ma, C.; Yuan, X.; Cao, Y. A Low Viscosity Slurry System for Fabricating Chromium Doped Yttrium Aluminum Garnet (Cr:YAG) Transparent Ceramics. J. Eur. Ceram. Soc. 2015. 35, 3873–3878. (109) Tanabe, Y.; Sugano, S. On the Absorption Spectra of Complex Ions. I. J. Phys. Soc. Jpn. 1954, 9, 753–766. (110) Tanabe, Y.; Sugano, S. On the Absorption Spectra of Complex Ions II. J. Phys. Soc. Jpn. 1954, 9, 766–779. (111) Fukaya, S.; Adachi, K.; Obara, M.; Kumagai, H. The Growth of Cr4+:YAG and Cr4+:GGG Thin Films by Pulsed Laser Deposition. Opt. Commun. 2001. 187, 373–377. (112) Majewska, N.; Tsai, Y. T.; Zeng, X. Y.; Fang, M. H.; Mahlik, S. Advancing Near-Infrared Light Sources: Enhancing Chromium Emission through Cation Substitution in Ultra-Broadband Near-Infrared Phosphors. Chem. Mater. 2023. 35, 10228–10237. (113) Chang, C. Y.; Majewska, N.; Chen, K. C.; Huang, W. T.; Leśniewski, T.; Leniec, G.; Kaczmarek, S. M.; Pang, W. K.; Peterson, V. K.; Cherng, D. H.; Lu, K. M.; Mahlik, S.; Liu, R. S. Broadening Phosphor-Converted Light-Emitting Diode Emission: Controlling Disorder. Chem. Mater. 2022, 34, 10190–10199. (114) Galanciak, D.; Perlin, P.; Grinberg, M.; Suchocki, A. High Pressure Spectroscopy of LLGG Doped with Cr3+. J. Lumin. 1994, 60–61, 223–226. (115) Shen, Y. R.; Grinberg, M.; Barzowska, J.; Bray, K. L.; Hanuza, J.; Dereń, P. J. The Effect of Pressure on Luminescence Properties of Cr3+ Ions in LiSc(WO4)2 Crystals—Part I: Pressure Dependent Emission Lineshape. J. Lumin. 2006, 116, 1–14. (116) Bray, K. L. High Pressure Probes of Electronic Structure and Luminescence Properties of Transition Metal and Lanthanide Systems. In Transition Metal and Rare Earth Compounds: Excited States, Transitions, Interactions I; Springer, Heidelberg, 2001. (117) Syassen, K. Ruby under Pressure. High Press. Res. 2008, 28, 75–126. (118) Jiang, Y.; Wu, G. F.; Mao, M. M.; Muhammad, R.; Sheng, W. Q.; Liu, B.; Bafrooei, H. B.; Nassaj, E, T.; Song, K. X. Deeper Insights into Dodecahedron Distortion and Microwave Dielectric Properties of Y3-xRxAl(Oct)2Al(Tet)3-xSixO12 (x = 0.1–0.5; R = Mg,Ca) Garnet-Type Ceramics. Ceram. Int. 2023. 49, 23334–23339. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92840 | - |
| dc.description.abstract | 近年來,近紅外光二區螢光粉已廣泛應用於製作螢光粉轉化發光二極體(phosphor-converted light-emitting diodes; pc-LEDs)並於眾多領域展現其應用價值。然因其於光通訊領域之應用尚未被充分研究與探討,故本研究旨於將近紅外光二區螢光粉製作為晶體光纖,並以提升光轉換效率為目標,將其應用於光通訊領域。
本研究第一部分著重於合成近紅外光二區之Y3−yAl4.9O12:0.1Cr3+/4+,yCa2+螢光粉。藉Cr與Ca2+摻雜入主體結構Y3Al5O12 (YAG),Cr作為活化劑,Ca2+作為促使價數補償導致Cr3+轉為Cr4+之關鍵元素,得近紅外光二區1100–1600 nm之寬譜放射。將最佳條件之螢光粉生長為晶體光纖,結果展現其近紅外光二區放光強度高於商用YAG:Cr4+晶體光纖。 本研究第二部分則著重於合成Y3−y−zAl4.9O12:0.1Cr3+/4+,yCa2+,zMg2+螢光粉。藉Cr、Ca2+及Mg2+摻雜於主體結構YAG中,提升近紅外光二區放光強度。Cr作為活化劑,Ca2+作為促使價數補償誘導Cr3+轉為Cr4+之關鍵元素,Mg2+作為促使部分價數補償與提升晶體結構之重要摻雜元素,得較第一部分研究更強之近紅外光二區1100–1600 nm區段之寬譜放射。將該系列之最佳螢光粉生長為晶體光纖,其近紅外光二區放光之表現更優異,其放光強度更高於第一部分研究之晶體光纖。 本研究之新穎性為成功將近紅外光二區螢光粉應用於光通訊領域,此方法於第一部分得近紅外光二區晶體光纖實現,於第二部分持續提升放光效率。此外,本研究藉結構、放光性質及晶體光纖測量進行分析,最終將生長之晶體光纖與商用品進行比較,證實其於應用層面之潛力。 | zh_TW |
| dc.description.abstract | In recent years, near-infrared-II (NIR-II) phosphors have been widely utilized as phosphor-converted light-emitting diodes (pc-LEDs) for various applications. However, their application in optical communications remains unexplored. Thus, this study aims to develop NIR-II phosphor into crystal fibers for optical communications applications and enhance their performance.
The first part of the study focuses on synthesizing Y3−yAl4.9O12:0.1Cr3+/4+,yCa2+ phosphors. Cr3+/4+ and Ca2+ are doped into Y3Al5O12 (YAG), with Cr as activators and Ca2+ as charge compensators to convert Cr3+ to Cr4+ to achieve NIR-II broadband emission of 1100–1600 nm. The optimized phosphor is grown into crystal fibers, showing significantly higher NIR-II emission than commercial YAG:Cr4+ crystal fibers. The second part of the study focuses on synthesizing Y3−y−zAl4.9O12:0.1Cr3+/4+,yCa2+,zMg2+ phosphors to enhance NIR-II emission. Cr3+/4+, Ca2+, and Mg2+ are doped into YAG, with Cr as activators, Ca2+ as charge compensators, Mg2+ as dopants to improve the crystal structure, exhibiting stronger NIR-II broadband emission of 1100–1600 nm. The optimized phosphor is grown into crystal fiber, showing higher NIR-II emission than the grown crystal fiber in the first part. The novelty of this study lies in the successful application of NIR-II phosphors in optical communications. The NIR-II crystal fibers are achieved in the first part, and the NIR-II emission is enhanced in the second part. Through structural analysis, luminescence characterization, and measurement of crystal fibers, the study demonstrates the potential of the materials for practical applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-02T16:14:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-02T16:14:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
口試委員審定書 I 誌謝 II 摘要 III Abstract IV 目次 V 圖次 VIII 表次 XV 第一章 緒論 1 1.1 光 1 1.1.1 近紅外光 1 1.1.2 近紅外光二區之性質與應用 2 1.2 光通訊(Optical Communication) 4 1.2.1 光纖(Fiber) 5 1.2.2 光纖放大器(Fiber Amplifiers) 8 1.3 螢光粉(Phosphor) 10 1.3.1 螢光粉之組成 11 1.4 螢光粉發光機制 13 1.4.1 賈布朗斯基圖(Jabłoński Diagram) 13 1.4.2 法蘭克-康頓原理(Franck-Condon Principle) 15 1.4.3 電子-聲子耦合效應(Electron-Phonon Coupling) 16 1.4.4 斯托克斯位移(Stokes Shift) 16 1.5 活化劑之選擇 18 1.5.1 3d過渡金屬之優勢 20 1.5.2 活化劑Cr3+之特性 21 1.5.3 活化劑Cr4+之特性 22 1.6 主體晶格對活化劑之影響因素 24 1.6.1 電子雲擴散效應(Nephelauxetic Effect) 24 1.6.2 晶場理論(Crystal Field Theory) 25 1.6.3 田邊–菅野圖(Tanabe–Sugano Diagram) 26 1.6.4 淬滅效應(Quenching Effect) 29 1.7 螢光粉之價數補償(Charge compensation) 31 1.7.1 提升Cr4+含量之策略 31 1.8 研究動機與目的 33 第二章 實驗步驟與儀器分析原理 35 2.1 化學藥品 35 2.2 螢光粉合成方法與晶體光纖之生長 36 2.2.1 Y3Al5O12:Cr3+/4+,Ca2+螢光粉之設計與合成 36 2.2.2 Y3Al5O12:Cr3+/4+,Ca2+晶體光纖之生長 40 2.2.3 Y3Al5O12:Cr3+/4+,Ca2+,Mg2+螢光粉之設計與合成 41 2.2.4 Y3Al5O12:Cr3+/4+,Ca2+,Mg2+晶體光纖之生長 43 2.3 儀器分析 44 2.3.1 結構鑑定 45 2.3.2 螢光性質分析 61 2.3.3 光纖性質分析 68 第三章 結果與討論 72 3.1 Y3Al5O12:Cr3+/4+,Ca2+螢光粉 72 3.1.1 Y3Al5O12:Cr3+/4+,Ca2+螢光粉之結構分析 73 3.1.2 Y3Al5O12:Cr3+/4+,Ca2+螢光粉之螢光性質 88 3.1.3 Y3Al5O12:Cr3+/4+,Ca2+螢光粉之熱特性 91 3.1.4 Y3Al5O12:Cr3+/4+,Ca2+螢光粉之變壓光譜 97 3.1.5 Y3Al5O12:Cr3+/4+,Ca2+晶體光纖 99 3.1.6 Y3Al5O12:Cr3+/4+,Ca2+晶體光纖之結構之螢光性質 101 3.2 Y3Al5O12:Cr3+/4+,Ca2+,Mg2+螢光粉 104 3.2.1 Y3Al5O12:Cr3+/4+,Ca2+,Mg2+螢光粉之結構分析 105 3.2.2 Y3Al5O12:Cr3+/4+,Ca2+,Mg2+螢光粉之螢光性質 121 3.2.3 Y3Al5O12:Cr3+/4+,Ca2+,Mg2+螢光粉之變溫光譜 123 3.2.4 Y3Al5O12:Cr3+/4+,Ca2+,Mg2+螢光粉之變壓光譜 126 3.2.5 Y3Al5O12:Cr3+/4+,Ca2+,Mg2+晶體光纖 127 3.2.6 Y3Al5O12:Cr3+/4+,Ca2+,Mg2+晶體光纖之結構與螢光性質分析 128 第四章 結論 130 參考文獻 132 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 石榴石結構 | zh_TW |
| dc.subject | 螢光粉 | zh_TW |
| dc.subject | 晶體光纖 | zh_TW |
| dc.subject | 近紅外光 | zh_TW |
| dc.subject | 寬譜放射 | zh_TW |
| dc.subject | 價數補償 | zh_TW |
| dc.subject | crystal fiber | en |
| dc.subject | phosphor | en |
| dc.subject | charge compensation | en |
| dc.subject | garnet structure | en |
| dc.subject | near-infrared | en |
| dc.subject | broadband emission | en |
| dc.title | 應用於近紅外光寬譜帶光纖放大器之四價鉻離子摻雜石榴石螢光材料 | zh_TW |
| dc.title | Tetravalent Chromium-Doped Garnet Fluorescence Material for Application in Broadband Near-Infrared Fiber Amplifiers | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 彭之皓;黃升龍;許火順;陶雨臺 | zh_TW |
| dc.contributor.oralexamcommittee | Chi-How Peng;Sheng-Lung Huang;Hwo-Shuenn Sheu;Yu-Tai Tao | en |
| dc.subject.keyword | 石榴石結構,螢光粉,晶體光纖,近紅外光,寬譜放射,價數補償, | zh_TW |
| dc.subject.keyword | garnet structure,phosphor,crystal fiber,near-infrared,broadband emission,charge compensation, | en |
| dc.relation.page | 146 | - |
| dc.identifier.doi | 10.6342/NTU202401326 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-06-26 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 20.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
