Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92836
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳炳宇zh_TW
dc.contributor.advisorBing-Yu Chenen
dc.contributor.author涂家銘zh_TW
dc.contributor.authorChia-Ming Tuen
dc.date.accessioned2024-07-02T16:12:59Z-
dc.date.available2024-07-03-
dc.date.copyright2024-07-02-
dc.date.issued2024-
dc.date.submitted2024-06-11-
dc.identifier.citation[1] C. Schied, A. Kaplanyan, C. Wyman, A. Patney, C. R. A. Chaitanya, J. Burgess, S. Liu, C. Dachsbacher, A. Lefohn, and M. Salvi, “Spatiotemporal variance-guided filtering: real-time reconstruction for path-traced globa illumination,” in Proceedings of High Performance Graphics, ser. HPG ’17. New York, NY, USA: Association for Computing Machinery, 2017.
[2] H. Dammertz, D. Sewtz, J. Hanika, and H. P. A. Lensch, “Edge-avoiding `Atrous wavelet transform for fast global illumination filtering,” in Proceedings of the Conference on High Performance Graphics, ser. HPG ’10. Goslar, DEU: Eurographics Association, 2010, p. 67–75.
[3] C. Schied, C. Peters, and C. Dachsbacher, “Gradient estimation for real-time adaptive temporal filtering,” Proc. ACM Comput. Graph. Interact. Tech., vol. 1, no. 2, aug 2018.
[4] B. Bitterli, C. Wyman, M. Pharr, P. Shirley, A. Lefohn, and W. Jarosz, “Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting,” ACM Trans. Graph., vol. 39, no. 4, aug 2020.
[5] G. Boiss ́e, “World-space spatiotemporal reservoir reuse for ray-traced global illumination,” in SIGGRAPH Asia 2021 Technical Communications, ser. SA ’21. New York, NY, USA: Association for Computing Machinery, 2021. https://doi.org/10.1145/3478512.3488613
[6] Y. Ouyang, S. Liu, M. Kettunen, M. Pharr, and J. Pantaleoni, “Restir gi: Path resampling for real-time path tracing,” Computer Graphics Forum, vol. 40, no. 8, pp. 17–29, 2021.
[7] D. Lin, C. Wyman, and C. Yuksel, “Fast volume rendering with spatiotemporal reservoir resampling,” ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2021), vol. 40, no. 6, pp. 278:1–278:18, 12 2021. http://doi.acm.org/10.1145/3478513.3480499
[8] D. Lin, M. Kettunen, B. Bitterli, J. Pantaleoni, C. Yuksel, and C. Wyman, “Generalized resampled importance sampling: foundations of restir,” ACM Trans. Graph., vol. 41, no. 4, jul 2022.
[9] A. Kuznetsov, N. K. Kalantari, and R. Ramamoorthi, “Deep adaptive sampling for low sample count rendering,” Computer Graphics Forum, vol. 37, pp. 35–44, 2018.
[10] C. R. A. Chaitanya, A. S. Kaplanyan, C. Schied, M. Salvi, A. Lefohn, D. Nowrouzezahrai, and T. Aila, “Interactive reconstruction of monte carloimage sequences using a recurrent denoising autoencoder,” ACM Trans. Graph., vol. 36, no. 4, jul 2017. https://doi.org/10.1145/3072959.3073601
[11] J. Hasselgren, J. Munkberg, M. Salvi, A. Patney, and A. Lefohn, “Neural temporal adaptive sampling and denoising,” Computer Graphics Forum, vol. 39, no. 2, pp. 147–155, 2020. https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13919
[12] M. Weier, T. Roth, E. Kruijff, A. Hinkenjann, A. P ́erard-Gayot, P. Slusallek, and Y. Li, “Foveated real-time ray tracing for head-mounted displays,” Comput. Graph. Forum, vol. 35, no. 7, p. 289–298, oct 2016.
[13] Y. Kim, Y. Ko, and I. Ihm, “Selective foveated ray tracing for head-mounted displays,” in 2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2021, pp. 413–421.
[14] B. Jin, I. Ihm, B. Chang, C. Park, W. Lee, and S. Jung, “Selective and adaptive supersampling for real-time ray tracing,” in Proceedings of the Conference on High Performance Graphics 2009, ser. HPG ’09. New York, NY, USA: Association for Computing Machinery, 2009, p. 117–125.
[15] L. Wang, X. Shi, and Y. Liu, “Foveated rendering: A state-of-the-art survey,” Computational Visual Media, vol. 9, no. 2, pp. 195–228, Jun 2023.
[16] C. R. A. Chaitanya, A. S. Kaplanyan, C. Schied, M. Salvi, A. Lefohn, D. Nowrouzezahrai, and T. Aila, “Interactive reconstruction of monte carloimage sequences using a recurrent denoising autoencoder,” ACM Trans. Graph., vol. 36, no. 4, jul 2017. https://doi.org/10.1145/3072959.3073601
[17] J. H. Mueller, T. Neff, P. Voglreiter, M. Steinberger, and D. Schmalstieg, “Temporally adaptive shading reuse for real-time rendering and virtual reality,” vol. 40, no. 2, apr 2021. https://doi.org/10.1145/3446790
[18] L. Yang, D. Nehab, P. V. Sander, P. Sitthi-amorn, J. Lawrence, and H. Hoppe, “Amortized supersampling,” ACM Trans. Graph., vol. 28, no. 5, p. 1–12, dec 2009. https://doi.org/10.1145/1618452.1618481
[19] B. Karis, “High-qality temporal supersampling,” 2014.
[20] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.
[21] S. Kallweit, P. Clarberg, C. Kolb, T. Davidovi ˇc, K.-H. Yao, T. Foley, Y. He, L. Wu, L. Chen, T. Akenine-M ̈oller, C. Wyman, C. Crassin, and N. Benty, “The Falcor rendering framework,” 8 2022. https://github.com/NVIDIAGameWorks/Falcor
[22] A. Lumberyard, “Amazon lumberyard bistro, open research content archive (orca),” July 2017. http://developer.nvidia.com/orca/amazon-lumberyard-bistro
[23] K. A. Nicholas Hull and N. Benty, “Nvidia emerald square, open research content archive (orca),” July 2017. http://developer.nvidia.com/orca/nvidia-emerald-square
[24] E. Games, “Unreal engine sun temple, open research content archive (orca),” October 2017. http://developer.nvidia.com/orca/epic-games-sun-temple 20
[25] M. Winkelmann, “Zero-day, open research content archive (orca),” November 2019. https://developer.nvidia.com/orca/beeple-zero-day
[26] B. Bitterli, “Rendering resources,” 2016, https://benedikt-bitterli.me/resources/.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92836-
dc.description.abstract透過時空重用增加有效採樣數量對於實時光線追踪的降噪至關重要。現有的方法通常假設輸入是由固定的每像素樣本數生成的,並在時間重用當中使用指數移動平均來合併顏色。然而,當每像素樣本數變化時,這些方法無法有效利用由高樣本數生成的顏色。在這項研究中,我們提出了一種新方法,稱為「雙歷史方法」,以增強現有的時空濾波器,提升其處理可變樣本數輸入的能力。我們使用這種方法改進了變異數引導的時空濾波(SVGF)算法,並通過簡單的注視點渲染管線評估其性能。zh_TW
dc.description.abstractSpatio-temporal reusing samples is critical to reducing noise for realtime ray-tracing. Existing methods usually assume inputs are generated by constant sample-per-pixel and use exponential moving averages to aggregate colors for temporal reuse. However, when sample-per-pixel vary, these approaches fail to effectively utilize colors generated by high sample counts. In this study, we proposed a novel method termed the "Two-history Approach" to augment existing spatio-temporal denoisers, enhancing their ability to handle inputs with variable sample count. We adapt the SVGF algorithm using our approach and evaluate its performance with a simple foveated rendering pipeline.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-02T16:12:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-02T16:12:59Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAbstract i
ListofFigures iv
ListofTables v
1 Introduction 1
2 RelatedWorks 5
2.1 Spatio-temporalReuse . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 FoveatedRendering . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 TemporalGradients . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 SVGF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Two-historyApproach 11
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 FirstPhaseofBlending . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 SecondPhaseofBlending . . . . . . . . . . . . . . . . . . . . . 15
3.4 CombinewithSpatialFilters . . . . . . . . . . . . . . . . . . . . 17
4 Experiments 19
4.1 ExperimentDesign . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 ImageQuality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 MemoryUsage . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5 Limitation and Future Work 30
6 Conclusion 32
Reference 33
-
dc.language.isoen-
dc.subject電腦圖學zh_TW
dc.subject注視點渲染zh_TW
dc.subject光線追蹤zh_TW
dc.subjectFoveated Renderingen
dc.subjectComputer Graphicsen
dc.subjectRay-tracingen
dc.title用於蒙地卡羅渲染的雙歷史時空濾波方法:以變異數引導的時空濾波為例zh_TW
dc.titleTwo-history Approach of Spatiotemporal Filtering for Monte Carlo Rendering: Spatiotemporal Variance-Guided Filtering as Exampleen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor簡韶逸zh_TW
dc.contributor.coadvisorShao-Yi Chienen
dc.contributor.oralexamcommittee莊永裕;張鈞法zh_TW
dc.contributor.oralexamcommitteeYung-Yu Chuang;Chun-Fa Changen
dc.subject.keyword電腦圖學,光線追蹤,注視點渲染,zh_TW
dc.subject.keywordComputer Graphics,Ray-tracing,Foveated Rendering,en
dc.relation.page36-
dc.identifier.doi10.6342/NTU202400987-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-06-11-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf17.06 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved