Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地理環境資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92819
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor溫在弘zh_TW
dc.contributor.advisorTzai-Hung Wenen
dc.contributor.author李蕙均zh_TW
dc.contributor.authorHui-Chun Leeen
dc.date.accessioned2024-07-02T16:07:59Z-
dc.date.available2024-07-03-
dc.date.copyright2024-07-02-
dc.date.issued2024-
dc.date.submitted2024-06-25-
dc.identifier.citationAkther, T., & Nur, T. (2022). A model of factors influencing COVID-19 vaccine acceptance: A synthesis of the theory of reasoned action, conspiracy theory belief, awareness, perceived usefulness, and perceived ease of use. PLoS One, 17(1), e0261869. https://doi.org/10.1371/journal.pone.0261869
Badham, J., Kee, F., & Hunter, R. F. (2021). Network structure influence on simulated network interventions for behaviour change. Social Networks, 64, 55-62.
Bauch, C. T. (2005). Imitation dynamics predict vaccinating behaviour. Proceedings of the Royal Society B: Biological Sciences, 272(1573), 1669-1675.
Bauch, C. T., & Bhattacharyya, S. (2012). Evolutionary game theory and social learning can determine how vaccine scares unfold. PLoS Comput Biol, 8(4), e1002452. https://doi.org/10.1371/journal.pcbi.1002452
Bauch, C. T., & Earn, D. J. (2004). Vaccination and the theory of games. Proc Natl Acad Sci U S A, 101(36), 13391-13394. https://doi.org/10.1073/pnas.0403823101
Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the national academy of sciences, 99(suppl_3), 7280-7287.
Chang, S. L., Piraveenan, M., Pattison, P., & Prokopenko, M. (2020). Game theoretic modelling of infectious disease dynamics and intervention methods: a review. J Biol Dyn, 14(1), 57-89. https://doi.org/10.1080/17513758.2020.1720322
Chen, F., Griffith, A., Cottrell, A., & Wong, Y. L. (2013). Behavioral responses to epidemics in an online experiment: using virtual diseases to study human behavior. PLoS One, 8(1), e52814. https://doi.org/10.1371/journal.pone.0052814
Cheng, H.-Y., Jian, S.-W., Liu, D.-P., Ng, T.-C., Huang, W.-T., & Lin, H.-H. (2020). Contact tracing assessment of COVID-19 transmission dynamics in Taiwan and risk at different exposure periods before and after symptom onset. JAMA internal medicine, 180(9), 1156-1163.
Department of Health, Taipei City Government. (2024). 接種完COVID-19疫苗後,多久會有保護力?https://health.gov.taipei/News_Content.aspx?n=416BCB37CFFAC913&sms=87415A8B9CE81B16&s=525AA05E1DF0C19E
Department of Health, Taipei City Government. (2024). 流感的傳染途徑、潛伏期與可傳染期為何?https://health.gov.taipei/News_Content.aspx?n=4EEA9B20817BE055&sms=65DC51EAB58A76FE&s=2CE94833BC96AE61
Ekman, I., Chanel, G., Järvelä, S., Kivikangas, J. M., Salminen, M., & Ravaja, N. (2011). Social Interaction in Games. Simulation & Gaming, 43(3), 321-338. https://doi.org/10.1177/1046878111422121
Elmerghany, A. H., & Paulus, G. (2017). Using minecraft as a geodesign tool for encouraging public participation in urban planning. GI_Forum2017, 5, 300-314.
Epstein, J. M., Hatna, E., & Crodelle, J. (2021). Triple contagion: a two-fears epidemic model. Journal of the Royal Society Interface, 18(181), 20210186.
Fine, P. E. (1993). Herd immunity: history, theory, practice. Epidemiologic reviews, 15(2), 265-302.
Firth, J. A., Hellewell, J., Klepac, P., Kissler, S., Kucharski, A. J., & Spurgin, L. G. (2020). Using a real-world network to model localized COVID-19 control strategies. Nature medicine, 26(10), 1616-1622.
Fu, F., Rosenbloom, D. I., Wang, L., & Nowak, M. A. (2011). Imitation dynamics of vaccination behaviour on social networks. Proc Biol Sci, 278(1702), 42-49. https://doi.org/10.1098/rspb.2010.1107
Greenstone, M., & Nigam, V. (2020). Does social distancing matter? University of Chicago, Becker Friedman Institute for Economics Working Paper(2020-26).
Jiang, B., Yuan, L., Zou, R., Su, R., & Mi, Y. (2023). The effect of migration on vaccination dilemma in networked populations. Chaos, Solitons & Fractals, 170, 113411.
John, T. J., & Samuel, R. (2000). Herd immunity and herd effect: new insights and definitions. European journal of epidemiology, 16, 601-606.
Kabir, K. M. A., & Tanimoto, J. (2019). Evolutionary vaccination game approach in metapopulation migration model with information spreading on different graphs. Chaos, Solitons & Fractals, 120, 41-55. https://doi.org/10.1016/j.chaos.2019.01.013
Kerr, C. C., Stuart, R. M., Mistry, D., Abeysuriya, R. G., Rosenfeld, K., Hart, G. R., Nunez, R. C., Cohen, J. A., Selvaraj, P., Hagedorn, B., George, L., Jastrzebski, M., Izzo, A. S., Fowler, G., Palmer, A., Delport, D., Scott, N., Kelly, S. L., Bennette, C. S., . . . Klein, D. J. (2021). Covasim: An agent-based model of COVID-19 dynamics and interventions. PLoS Comput Biol, 17(7), e1009149. https://doi.org/10.1371/journal.pcbi.1009149
Kleczkowski, A., Maharaj, S., Rasmussen, S., Williams, L., & Cairns, N. (2015). Spontaneous social distancing in response to a simulated epidemic: a virtual experiment. BMC Public Health, 15, 973. https://doi.org/10.1186/s12889-015-2336-7
Lofgren, E. T., & Fefferman, N. H. (2007). The untapped potential of virtual game worlds to shed light on real world epidemics. The Lancet Infectious Diseases, 7(9), 625-629. https://doi.org/10.1016/s1473-3099(07)70212-8
Massey, D., Ahlqvist, O., Vatev, K., & Rush, J. (2019). A Massively Multi-user Online Game Framework for Agent-Based Spatial Simulation. In CyberGIS for Geospatial Discovery and Innovation (pp. 213-224). Springer.
Montopoli, L., & Bauch, C. T. (2010). The free rider problem in vaccination policy and implications for global eradication of infectious diseases: a two-country game dynamic model.
Nebel, S., Schneider, S., & Rey, G. D. (2016). Mining learning and crafting scientific experiments: a literature review on the use of minecraft in education and research. Journal of Educational Technology & Society, 19(2), 355-366.
O''Sullivan, D., & Perry, G. L. (2013). Spatial simulation: exploring pattern and process. John Wiley & Sons.
Opmeer, M., Dias, E., De Vogel, B., Tangerman, L., & Scholten, H. (2018). Minecraft in support of teaching sustainable spatial planning in secondary education. 10th International Conference on Computer Supported Education,
Pan, Y., Ng, C. T., & Cheng, T. C. E. (2021). Effect of free-riding behavior on vaccination coverage with customer regret. Computers & Industrial Engineering, 159. https://doi.org/10.1016/j.cie.2021.107494
Perisic, A., & Bauch, C. T. (2009). Social contact networks and disease eradicability under voluntary vaccination. PLoS computational biology, 5(2), e1000280.
Poletti, P., Caprile, B., Ajelli, M., Pugliese, A., & Merler, S. (2009). Spontaneous behavioural changes in response to epidemics. Journal of theoretical biology, 260(1), 31-40.
R Izquierdo, L., S Izquierdo, S., & H Sandholm, W. (2019). Agent-Based Evolutionary Game Dynamics. Independent.
Reluga, T. C. (2010). Game theory of social distancing in response to an epidemic. PLoS computational biology, 6(5), e1000793.
Stahl, J.-P., Cohen, R., Denis, F., Gaudelus, J., Martinot, A., Lery, T., & Lepetit, H. (2016). The impact of the web and social networks on vaccination. New challenges and opportunities offered to fight against vaccine hesitancy. Medecine et maladies infectieuses, 46(3), 117-122.
Taiwan Centers for Disease Control. (2024). 季節性流感防治。https://www.cdc.gov.tw/Category/QAPage/DQWXG19u2cXMH1jwGKXHug
Taiwan Food and Drug Administration. (2021). COVID-19 疫苗不良事件通報摘要。https://www.fda.gov.tw/
World Health Organization. (2024). Middle East Respiratory Syndrome Coronavirus - Kingdom of Saudi Arabia. https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON506.
Worsley, M., & Bar-El, D. (2020). Spatial Reasoning in Minecraft: An Exploratory Study of In-Game Spatial Practices. Computersupported collaborative learning, 2.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92819-
dc.description.abstract疫苗在減緩疫情傳播方面起著至關重要的作用,但疫苗固有的風險和成本常使得提高疫苗覆蓋率變得具有挑戰性。社交網絡作為影響個人疫苗行為很重要的因素,因其與個人接觸和傳播風險以及疫苗資訊認知密切相關。接觸對象的免疫狀況也影響個人接種疫苗的動機,這可能促成了所謂的「搭便車效應」。本研究旨在使用《Minecraft》創建一個虛擬社會環境,以模擬這個虛擬社會中的疫情傳播。研究將蒐集玩家的真實遊戲數據,以捕捉疫情期間的人類行為。研究還將使用迴歸分析來檢驗現實生活行為與遊戲內行為之間的關聯性,以及疫苗報酬、社交網絡和個人疫苗行為之間的關係。zh_TW
dc.description.abstractVaccines serve as a crucial tool in mitigating the spread of epidemics, but the inherent risks and costs associated with vaccines often make it challenging to increase vaccine coverage. Social networks play a significant role in influencing individual vaccine behavior, as they are closely linked to personal contact and transmission risk, as well as vaccine information awareness. The immunity status of contacts also affects the individual''s motivation to get vaccinated, potentially contributing to the phenomenon known as the “free rider effect.” This study aims to create a virtual social environment using Minecraft to simulate the spread of an epidemic within this virtual society. It will collect real gameplay data from players to capture human behavior during an epidemic. The study will also employ regression analysis to examine the relationship between real-life behaviors and in-game behaviors, as well as the relationship between vaccination payoff, social networks, and individual vaccination behavior.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-02T16:07:59Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-02T16:07:59Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 I
摘要 II
Abstract III
Contents IV
List of Figures VI
List of Tables VI
Chapter 1 Introduction 1
1.1 Background 1
1.2 Objectives 3
Chapter 2 Literature Review 5
2.1 Vaccination and Networks 5
2.1.1 Exposure to Infection Risk 6
2.1.2 Perceived Vaccine Risk 7
2.1.3 Vaccination Game Theory and the Free-Rider Effect 8
2.2 Simulation Model 9
2.2.1 Agent-Based Model 10
2.2.2 Experimental Simulation 11
2.2.3 Minecraft as a Simulation Platform 12
Chapter 3 Methods 14
3.1 Simulation Environment 15
3.1.1 Minecraft 15
3.1.2 Time Settings 15
3.1.3 Activity Region 16
3.2 Players 16
3.2.1 Recruitment 16
3.2.2 Rules 18
3.2.3 Rewards 19
3.3 Villagers 19
3.3.1 Behavior 19
3.3.2 Trading System 20
3.3.3 Disease-related Settings 20
3.4 Epidemic Scenario 20
3.4.1 Contact and Infection 21
3.4.2 Vaccination 22
3.4.3 Parameters 23
3.5 Strategy and Reaction 24
3.5.1 Payoff 24
3.5.2 Perception and Information 25
3.6 Data Processing 26
3.6.1 Gaming Data 26
3.6.2 Questionnaire Data 29
3.6.3 Variables 30
3.7 Hypotheses 33
3.8 Models 34
3.8.1 Model 1: Real-world Behavior and In-game Behavior 34
3.8.2 Model 2: Factors Influencing Vaccination Behavior 36
Chapter 4 Results 38
4.1 Virtual Disease Transmission Scenario 38
4.2 Descriptive Statistics 39
4.3 Model Results 46
Chapter 5 Discussion 51
5.1 Interpretation of Findings 51
5.2 Limitations and Future Works 53
Chapter 6 Conclusion 55
References 57
Appendix 64
-
dc.language.isoen-
dc.subject社交網絡zh_TW
dc.subject玩家模擬模型zh_TW
dc.subject代理人模擬模型zh_TW
dc.subject暴露風險zh_TW
dc.subject疫苗行為zh_TW
dc.subjectVaccination Behavioren
dc.subjectExposure Risken
dc.subjectAgent-Based Modelen
dc.subjectSocial Networken
dc.subjectPlayer-Based Modelen
dc.title在多人線上遊戲中建立玩家模擬模型——討論接觸網絡對疫苗決策的影響zh_TW
dc.titleBuilding Player-Based Model in Multiplayer Online Games––the Impact of Exposure Networks on Vaccine Decisionsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee余清祥;陳怡如zh_TW
dc.contributor.oralexamcommitteeChing-Syang Yue;Yi-Ju Chenen
dc.subject.keyword玩家模擬模型,社交網絡,疫苗行為,暴露風險,代理人模擬模型,zh_TW
dc.subject.keywordPlayer-Based Model,Social Network,Vaccination Behavior,Exposure Risk,Agent-Based Model,en
dc.relation.page67-
dc.identifier.doi10.6342/NTU202401310-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-06-25-
dc.contributor.author-college理學院-
dc.contributor.author-dept地理環境資源學系-
顯示於系所單位:地理環境資源學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf2.31 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved