Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92813
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉如熹zh_TW
dc.contributor.advisorRu-Shi Liuen
dc.contributor.author莫誠康zh_TW
dc.contributor.authorKevin Iputeraen
dc.date.accessioned2024-07-01T16:13:54Z-
dc.date.available2024-07-02-
dc.date.copyright2024-07-01-
dc.date.issued2024-
dc.date.submitted2024-06-25-
dc.identifier.citation(1) Höök, M.; Tang, X. Depletion of Fossil Fuels and Anthropogenic Climate Change—a Review. Energy policy 2013, 52, 797–809.
(2) Nazari, M.; Ardehali, M.; Jafari, S. Pumped-Storage Unit Commitment with Considerations for Energy Demand, Economics, and Environmental Constraints. Energy 2010, 35, 4092–4101.
(3) Du, J.; Liu, Y.; Mo, X.; Li, Y.; Li, J.; Wu, X.; Ouyang, M. Impact of High-Power Charging on the Durability and Safety of Lithium Batteries Used in Long-Range Battery Electric Vehicles. Appl. Energy 2019, 255, 113793.
(4) Yang, Y.; Okonkwo, E. G.; Huang, G.; Xu, S.; Sun, W.; He, Y. On the Sustainability of Lithium Ion Battery Industry–a Review and Perspective. Energy Storage Mater. 2021, 36, 186–212.
(5) Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the Development of Advanced Li-Ion Batteries: A Review. Energy Environ. Sci. 2011, 4, 3243–3262.
(6) Deane, J. P.; Gallachóir, B. Ó.; McKeogh, E. Techno-Economic Review of Existing and New Pumped Hydro Energy Storage Plant. Renew. Sust. Energ. Rev. 2010, 14, 1293–1302.
(7) Whittingham, M. S. The Role of Ternary Phases in Cathode Reactions. J. Electrochem. Soc. 1976, 123, 315.
(8) Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B. LixCoO2 (0< X<-1): A New Cathode Material for Batteries of High Energy Density. Mater. Res. Bull. 1980, 15, 783–789.
(9) Yoshino, A. The Lithium-Ion Battery: Two Breakthroughs in Development and Two Reasons for the Nobel Prize. Bull. Chem. Soc. Jpn. 2022, 95, 195–197.
(10) Goodenough, J. B.; Park, K.-S. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.
(11) Chen, C.; Liu, J.; Stoll, M.; Henriksen, G.; Vissers, D.; Amine, K. Aluminum-Doped Lithium Nickel Cobalt Oxide Electrodes for High-Power Lithium-Ion Batteries. J. Power Sources 2004, 128, 278–285.
(12) Patoux, S.; Sannier, L.; Lignier, H.; Reynier, Y.; Bourbon, C.; Jouanneau, S.; Le Cras, F.; Martinet, S. High Voltage Nickel Manganese Spinel Oxides for Li-Ion Batteries. Electrochim. Acta 2008, 53, 4137–4145.
(13) Zou, F.; Nallan, H. C.; Dolocan, A.; Xie, Q.; Li, J.; Coffey, B. M.; Ekerdt, J. G.; Manthiram, A. Long-Life LiNi0.5Mn1.5O4/Graphite Lithium-Ion Cells with an Artificial Graphite-Electrolyte Interface. Energy Storage Mater. 2021, 43, 499–508.
(14) Ou, K.; Cheng, F.; Wen, L.; Wang, X.; Wang, T.; Zeng, X.; Lu, W.; Dai, L. Identifying Lithium Difluoro (Oxalate) Borate as a Multifunctional Electrolyte Additive to Enable High-Voltage Li4ti5o12 Lithium-Ion Batteries. J. Mater. Chem. A 2024, DOI: 10.1039/d4ta00750f.
(15) Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Li–O2 and Li–S Batteries with High Energy Storage. Nat. Mater. 2012, 11, 19–29.
(16) Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium–Air Battery: Promise and Challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203.
(17) Iturrondobeitia, M.; Akizu-Gardoki, O.; Minguez, R.; Lizundia, E. Environmental Impact Analysis of Aprotic Li–O2 Batteries Based on Life Cycle Assessment. ACS Sustain. Chem. Eng. 2021, 9, 7139–7153.
(18) Nestoridi, M.; Pletcher, D.; Wood, R. J.; Wang, S.; Jones, R. L.; Stokes, K. R.; Wilcock, I. The Study of Aluminium Anodes for High Power Density Al/Air Batteries with Brine Electrolytes. J. Power Sources 2008, 178, 445–455.
(19) Khan, Z.; Vagin, M.; Crispin, X. Can Hybrid Na–Air Batteries Outperform Nonaqueous Na–O2 Batteries? Adv. Sci. 2020, 7, 1902866.
(20) Takechi, K.; Shiga, T.; Asaoka, T. A Li–O2/CO2 Battery. Chem. Commun. 2011, 47, 3463–3465.
(21) Lu, J.; Li, L.; Park, J.-B.; Sun, Y.-K.; Wu, F.; Amine, K. Aprotic and Aqueous Li–O2 Batteries. Chem. Rev. 2014, 114, 5611–5640.
(22) Jiao, Y.; Qin, J.; Sari, H. M. K.; Li, D.; Li, X.; Sun, X. Recent Progress and Prospects of Li–CO2 Batteries: Mechanisms, Catalysts and Electrolytes. Energy Storage Mater. 2021, 34, 148–170.
(23) Abraham, K.; Jiang, Z. A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery. J. Electrochem. Soc. 1996, 143, 1.
(24) Read, J. Characterization of the Lithium/Oxygen Organic Electrolyte Battery. J. Electrochem. Soc. 2002, 149, A1190.
(25) Read, J. Ether-Based Electrolytes for the Lithium/Oxygen Organic Electrolyte Battery. J. Electrochem. Soc. 2005, 153, A96.
(26) Ogasawara, T.; Débart, A.; Holzapfel, M.; Novák, P.; Bruce, P. G. Rechargeable Li2O2 Electrode for Lithium Batteries. J. Am. Chem. Soc. 2006, 128, 1390–1393.
(27) Zaghib, K.; Striebel, K.; Guerfi, A.; Shim, J.; Armand, M.; Gauthier, M. LiFePO4/Polymer/Natural Graphite: Low Cost Li-Ion Batteries. Electrochim. Acta 2004, 50, 263–270.
(28) Yuan, R.; Tan, C.; Zhang, Z.; Zeng, L.; Kang, W.; Liu, J.; Gao, X.; Tan, P.; Chen, Y.; Zhang, C. Topological Engineering Electrodes with Ultrafast Oxygen Transport for Super‐Power Sodium‐Oxygen Batteries. Adv. Mater. 2024, 2311627.
(29) McCloskey, B. D.; Scheffler, R.; Speidel, A.; Bethune, D. S.; Shelby, R. M.; Luntz, A. C. On the Efficacy of Electrocatalysis in Nonaqueous Li–O2 Batteries. J. Am. Chem. Soc. 2011, 133, 18038–18041.
(30) Xu, C.; Ge, A.; Kannari, K.; Peng, B.; Xue, M.; Ding, B.; Inoue, K.-i.; Zhang, X.; Ye, S. The Decisive Role of Li2O2 Desorption for Oxygen Reduction Reaction in Li–O2 Batteries. ACS Energy Lett. 2023, 8, 1289–1299.
(31) Wang, C.; Hong, J. Ionic/Electronic Conducting Characteristics of LiFePO4 Cathode Materials: The Determining Factors for High Rate Performance. Electrochem. Solid-State Lett. 2007, 10, A65.
(32) Gaberscek, M.; Dominko, R.; Jamnik, J. Is Small Particle Size More Important Than Carbon Coating? An Example Study on LiFePO4 Cathodes. Electrochem. Commun. 2007, 9, 2778–2783.
(33) Dahbi, M.; Ghamouss, F.; Tran-Van, F.; Lemordant, D.; Anouti, M. Comparative Study of EC/DMC LiTFSI and LiPF6 Electrolytes for Electrochemical Storage. J. Power Sources 2011, 196, 9743–9750.
(34) Black, R.; Adams, B.; Nazar, L. Non‐Aqueous and Hybrid Li–O2 Batteries. Adv. Energy Mater. 2012, 2, 801–815.
(35) Wang, B. Recent Development of Non-Platinum Catalysts for Oxygen Reduction Reaction. J. Power Sources 2005, 152, 1–15.
(36) Matsumoto, Y.; Sato, E. Electrocatalytic Properties of Transition Metal Oxides for Oxygen Evolution Reaction. Mater. Chem. Phys. 1986, 14, 397–426.
(37) Tian, J.; Rao, Y.; Shi, W.; Yang, J.; Ning, W.; Li, H.; Yao, Y.; Zhou, H.; Guo, S. Sabatier Relations in Electrocatalysts Based on High‐Entropy Alloys with Wide‐Distributed D‐Band Centers for Li–O2 Batteries. Angew. Chem. Inter. Ed. 2023, 62, e202310894.
(38) Qiu, Q.; Long, J.; Yao, P.; Wang, J.; Li, X.; Pan, Z.-Z.; Zhao, Y.; Li, Y. Cathode Electrocatalyst in Aprotic Lithium Oxygen (Li–O2) Battery: A Literature Survey. Catal. Today 2023, 114138.
(39) Débart, A.; Bao, J.; Armstrong, G.; Bruce, P. G. An O2 Cathode for Rechargeable Lithium Batteries: The Effect of a Catalyst. J. Power Sources 2007, 174, 1177–1182.
(40) Débart, A.; Paterson, A. J.; Bao, J.; Bruce, P. G. α‐MnO2 Nanowires: A Catalyst for the O2 Electrode in Rechargeable Lithium Batteries. Angew. Chem. Inter. Ed. 2008, 47, 4521–4524.
(41) Lu, Y.-C.; Gasteiger, H. A.; Parent, M. C.; Chiloyan, V.; Shao-Horn, Y. The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries. Electrochem. Solid-State Lett. 2010, 13, A69.
(42) Lu, Y.-C.; Xu, Z.; Gasteiger, H. A.; Chen, S.; Hamad-Schifferli, K.; Shao-Horn, Y. Platinum–Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium–Air Batteries. J. Am. Chem. Soc. 2010, 132, 12170–12171.
(43) Mizuno, F.; Nakanishi, S.; Kotani, Y.; Yokoishi, S.; Iba, H. Rechargeable Li–Air Batteries with Carbonate-Based Liquid Electrolytes. Electrochemistry 2010, 78, 403–405.
(44) Freunberger, S. A.; Chen, Y.; Peng, Z.; Griffin, J. M.; Hardwick, L. J.; Bardé, F.; Novák, P.; Bruce, P. G. Reactions in the Rechargeable Lithium–O2 Battery with Alkyl Carbonate Electrolytes. J. Am. Chem. Soc. 2011, 133, 8040–8047.
(45) McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.; Girishkumar, G.; Luntz, A. C. Solvents’ Critical Role in Nonaqueous Lithium–Oxygen Battery Electrochemistry. J. Phys. Chem. Lett. 2011, 2, 1161–1166.
(46) Schwenke, K. U.; Meini, S.; Wu, X.; Gasteiger, H. A.; Piana, M. Stability of Superoxide Radicals in Glyme Solvents for Non-Aqueous Li–O2 Battery Electrolytes. Phys. Chem. Chem. Phys. 2013, 15, 11830–11839.
(47) Meini, S.; Solchenbach, S.; Piana, M.; Gasteiger, H. A. The Role of Electrolyte Solvent Stability and Electrolyte Impurities in the Electrooxidation of Li2O2 in Li–O2 Batteries. J. Electrochem. Soc. 2014, 161, A1306.
(48) Wang, Y.; Liang, Z.; Zou, Q.; Cong, G.; Lu, Y.-C. Mechanistic Insights into Catalyst-Assisted Nonaqueous Oxygen Evolution Reaction in Lithium–Oxygen Batteries. J. Phys. Chem. C 2016, 120, 6459–6466.
(49) Tian, F.; Radin, M. D.; Siegel, D. J. Enhanced Charge Transport in Amorphous Li2O2. Chem. Mater. 2014, 26, 2952–2959.
(50) Ong, S. P.; Mo, Y.; Ceder, G. Low Hole Polaron Migration Barrier in Lithium Peroxide. Phys. Rev. B 2012, 85, 081105.
(51) Geng, W.; He, B.; Ohno, T. Grain Boundary Induced Conductivity in Li2O2. J. Phys. Chem. C 2013, 117, 25222–25228.
(52) Zheng, H.; Xiao, D.; Li, X.; Liu, Y.; Wu, Y.; Wang, J.; Jiang, K.; Chen, C.; Gu, L.; Wei, X. New Insight in Understanding Oxygen Reduction and Evolution in Solid-State Lithium–Oxygen Batteries Using an in Situ Environmental Scanning Electron Microscope. Nano Lett. 2014, 14, 4245–4249.
(53) Dunst, A.; Epp, V.; Hanzu, I.; Freunberger, S. A.; Wilkening, M. Short-Range Li Diffusion Vs. Long-Range Ionic Conduction in Nanocrystalline Lithium Peroxide Li2O2—the Discharge Product in Lithium–Air Batteries. Energy Environ. Sci. 2014, 7, 2739–2752.
(54) Feng, N.; He, P.; Zhou, H. Enabling Catalytic Oxidation of Li2O2 at the Liquid–Solid Interface: The Evolution of an Aprotic Li–O2 Battery. ChemSusChem 2015, 8, 600–602.
(55) Askins, E. J.; Zoric, M. R.; Li, M.; Amine, R.; Amine, K.; Curtiss, L. A.; Glusac, K. D. Triarylmethyl Cation Redox Mediators Enhance Li–O2 Battery Discharge Capacities. Nat. Chem. 2023, 15, 1247–1254.
(56) Park, J. B.; Lee, S. H.; Jung, H. G.; Aurbach, D.; Sun, Y. K. Redox Mediators for Li–O2 Batteries: Status and Perspectives. Adv. Mater. 2018, 30, 1704162.
(57) Shen, X.; Zhang, S.; Wu, Y.; Chen, Y. Promoting Li–O2 Batteries with Redox Mediators. ChemSusChem 2019, 12, 104–114.
(58) Chen, Y.; Freunberger, S. A.; Peng, Z.; Fontaine, O.; Bruce, P. G. Charging a Li–O2 Battery Using a Redox Mediator. Nat. Chem. 2013, 5, 489–494.
(59) Bergner, B. J.; Schürmann, A.; Peppler, K.; Garsuch, A.; Janek, J. r. Tempo: A Mobile Catalyst for Rechargeable Li–O2 Batteries. J. Am. Chem. Soc. 2014, 136, 15054–15064.
(60) Bergner, B. J.; Hofmann, C.; Schürmann, A.; Schröder, D.; Peppler, K.; Schreiner, P. R.; Janek, J. Understanding the Fundamentals of Redox Mediators in Li–O2 Batteries: A Case Study on Nitroxides. Phys. Chem. Chem. Phys. 2015, 17, 31769–31779.
(61) Lim, H.-D.; Lee, B.; Zheng, Y.; Hong, J.; Kim, J.; Gwon, H.; Ko, Y.; Lee, M.; Cho, K.; Kang, K. Rational Design of Redox Mediators for Advanced Li–O2 Batteries. Nat. Energy 2016, 1, 1–9.
(62) Lee, S. H.; Park, J. B.; Lim, H. S.; Sun, Y. K. An Advanced Separator for Li–O2 Batteries: Maximizing the Effect of Redox Mediators. Adv. Energy Mater. 2017, 7, 1602417.
(63) Gao, X.; Chen, Y.; Johnson, L.; Bruce, P. G. Promoting Solution Phase Discharge in Li–O2 Batteries Containing Weakly Solvating Electrolyte Solutions. Nat. Mater. 2016, 15, 882–888.
(64) Dou, Y.; Kan, D.; Su, Y.; Zhang, Y.; Wei, Y.; Zhang, Z.; Zhou, Z. Critical Factors Affecting the Catalytic Activity of Redox Mediators on Li–O2 Battery Discharge. J. Phys. Chem. Lett. 2022, 13, 7081–7086.
(65) Vasudevan, D.; Wendt, H. Electroreduction of Oxygen in Aprotic Media. J. Electroanal. Chem. 1995, 392, 69–74.
(66) Yin, W.; Grimaud, A.; Lepoivre, F.; Yang, C.; Tarascon, J. M. Chemical Vs Electrochemical Formation of Li2CO3 as a Discharge Product in Li–O2/CO2 Batteries by Controlling the Superoxide Intermediate. J. Phys. Chem. Lett. 2017, 8, 214–222.
(67) Herranz, J.; Garsuch, A.; Gasteiger, H. A. Using Rotating Ring Disc Electrode Voltammetry to Quantify the Superoxide Radical Stability of Aprotic Li–Air Battery Electrolytes. J. Phys. Chem. C 2012, 116, 19084–19094.
(68) Kwabi, D. G.; Tułodziecki, M.; Pour, N.; Itkis, D. M.; Thompson, C. V.; Shao-Horn, Y. Controlling Solution-Mediated Reaction Mechanisms of Oxygen Reduction Using Potential and Solvent for Aprotic Lithium–Oxygen Batteries. J. Phys. Chem. Lett. 2016, 7, 1204–1212.
(69) Gallant, B. M.; Kwabi, D. G.; Mitchell, R. R.; Zhou, J.; Thompson, C. V.; Shao-Horn, Y. Influence of Li2O2 Morphology on Oxygen Reduction and Evolution Kinetics in Li–O2 Batteries. Energy Environ. Sci. 2013, 6, 2518–2528.
(70) Zhai, D.; Lau, K. C.; Wang, H.-H.; Wen, J.; Miller, D. J.; Lu, J.; Kang, F.; Li, B.; Yang, W.; Gao, J. Interfacial Effects on Lithium Superoxide Disproportionation in Li–O2 Batteries. Nano Lett. 2015, 15, 1041–1046.
(71) Gutmann, V. Solvent Effects on the Reactivities of Organometallic Compounds. Coord. Chem. Rev. 1976, 18, 225–255.
(72) Johnson, L.; Li, C.; Liu, Z.; Chen, Y.; Freunberger, S. A.; Ashok, P. C.; Praveen, B. B.; Dholakia, K.; Tarascon, J.-M.; Bruce, P. G. The Role of LiO2 Solubility in O2 Reduction in Aprotic Solvents and Its Consequences for Li–O2 Batteries. Nat. Chem. 2014, 6, 1091–1099.
(73) Matsuda, S.; Kubo, Y.; Uosaki, K.; Nakanishi, S. Potassium Ions Promote Solution-Route Li2O2 Formation in the Positive Electrode Reaction of Li–O2 Batteries. J. Phys. Chem. Lett. 2017, 8, 1142–1146.
(74) Xu, W.; Xiao, J.; Wang, D.; Zhang, J.; Zhang, J.-G. Crown Ethers in Nonaqueous Electrolytes for Lithium/Air Batteries. Electrochem. Solid-State Lett. 2010, 13, A48.
(75) Aetukuri, N. B.; McCloskey, B. D.; García, J. M.; Krupp, L. E.; Viswanathan, V.; Luntz, A. C. Solvating Additives Drive Solution-Mediated Electrochemistry and Enhance Toroid Growth in Non-Aqueous Li–O2 Batteries. Nat. Chem. 2015, 7, 50–56.
(76) Wu, S.; Qin, N.; Zhang, H.; Wei, C.; Wang, Z.; Luo, W.; Li, Y.; Wang, H.; Zhang, K.; Wang, Q.; Lu, Z. Revealing the Catalytic Pathway of a Quinone-Mediated Oxygen Reduction Reaction in Aprotic Li–O2 Batteries. Chem. Commun. 2022, 58, 1025–1028.
(77) Park, J.-B.; Lee, S. H.; Jung, H.-G.; Aurbach, D.; Sun, Y.-K. Redox Mediators for Li–O2 Batteries: Status and Perspectives. Adv. Mater. 2018, 30, 1704162.
(78) Sun, D.; Shen, Y.; Zhang, W.; Yu, L.; Yi, Z.; Yin, W.; Wang, D.; Huang, Y.; Wang, J.; Wang, D.; Goodenough, J. B. A Solution-Phase Bifunctional Catalyst for Lithium–Oxygen Batteries. J. Am. Chem. Soc. 2014, 136, 8941–8946.
(79) Ryu, W.-H.; Gittleson, F. S.; Thomsen, J. M.; Li, J.; Schwab, M. J.; Brudvig, G. W.; Taylor, A. D. Heme Biomolecule as Redox Mediator and Oxygen Shuttle for Efficient Charging of Lithium–Oxygen Batteries. Nat. Commun. 2016, 7, 12925.
(80) Matsuda, S.; Mori, S.; Kubo, Y.; Uosaki, K.; Hashimoto, K.; Nakanishi, S. Cobalt Phthalocyanine Analogs as Soluble Catalysts That Improve the Charging Performance of Li–O2 Batteries. Chem. Phys. Lett. 2015, 620, 78–81.
(81) Yao, K. P. C.; Frith, J. T.; Sayed, S. Y.; Bardé, F.; Owen, J. R.; Shao-Horn, Y.; Garcia-Araez, N. Utilization of Cobalt Bis(Terpyridine) Metal Complex as Soluble Redox Mediator in Li–O2 Batteries. J. Phys. Chem. C 2016, 120, 16290–16297.
(82) Wei, R.; Fang, M.; Dong, G.; Ho, J. C. Is Platinum a Suitable Counter Electrode Material for Electrochemical Hydrogen Evolution Reaction? Sci. Bull. 2017, 62, 971–973.
(83) Lim, H.-D.; Song, H.; Kim, J.; Gwon, H.; Bae, Y.; Park, K.-Y.; Hong, J.; Kim, H.; Kim, T.; Kim, Y. H.; Lepró, X.; Ovalle-Robles, R.; Baughman, R. H.; Kang, K. Superior Rechargeability and Efficiency of Lithium–Oxygen Batteries: Hierarchical Air Electrode Architecture Combined with a Soluble Catalyst. Angew. Chem. Inter. Ed. 2014, 53, 3926–3931.
(84) Kwak, W.-J.; Hirshberg, D.; Sharon, D.; Afri, M.; Frimer, A. A.; Jung, H.-G.; Aurbach, D.; Sun, Y.-K. Li–O2 Cells with LiBr as an Electrolyte and a Redox Mediator. Energy Environ. Sci. 2016, 9, 2334–2345.
(85) Yu, M.; Ren, X.; Ma, L.; Wu, Y. Integrating a Redox-Coupled Dye-Sensitized Photoelectrode into a Lithium–Oxygen Battery for Photoassisted Charging. Nat. Commun. 2014, 5, 5111.
(86) Zhang, W.; Shen, Y.; Sun, D.; Huang, Z.; Zhou, J.; Yan, H.; Huang, Y. Promoting Li2O2 Oxidation Via Solvent-Assisted Redox Shuttle Process for Low Overpotential Li–O2 Battery. Nano Energy 2016, 30, 43–51.
(87) Zhao, Y.; Wang, L.; Byon, H. R. High-Performance Rechargeable Lithium-Iodine Batteries Using Triiodide/Iodide Redox Couples in an Aqueous Cathode. Nat. Commun. 2013, 4, 1896.
(88) Bergner, B. J.; Busche, M. R.; Pinedo, R.; Berkes, B. B.; Schröder, D.; Janek, J. How to Improve Capacity and Cycling Stability for Next Generation Li–O2 Batteries: Approach with a Solid Electrolyte and Elevated Redox Mediator Concentrations. ACS Appl. Mater. Interfaces 2016, 8, 7756–7765.
(89) Lee, D. J.; Lee, H.; Kim, Y.-J.; Park, J.-K.; Kim, H.-T. Sustainable Redox Mediation for Lithium–Oxygen Batteries by a Composite Protective Layer on the Lithium-Metal Anode. Adv. Mater. 2016, 28, 857–863.
(90) Lee, S. H.; Park, J.-B.; Lim, H.-S.; Sun, Y.-K. An Advanced Separator for Li–O2 Batteries: Maximizing the Effect of Redox Mediators. Adv. Energy Mater. 2017, 7, 1602417.
(91) Zhang, T.; Liao, K.; He, P.; Zhou, H. A Self-Defense Redox Mediator for Efficient Lithium–O2 Batteries. Energy Environ. Sci. 2016, 9, 1024–1030.
(92) Yoo, E.; Zhou, H. LiF Protective Layer on a Li Anode: Toward Improving the Performance of Li–O2 Batteries with a Redox Mediator. ACS Appl. Mater. Interfaces 2020, 12, 18490–18495.
(93) Kwak, W.-J.; Park, J.; Kim, H.; Joo, J. M.; Aurbach, D.; Byon, H. R.; Sun, Y.-K. Oxidation Stability of Organic Redox Mediators as Mobile Catalysts in Lithium–Oxygen Batteries. ACS Energy Lett. 2020, 5, 2122–2129.
(94) Liang, Z.; Zou, Q.; Xie, J.; Lu, Y.-C. Suppressing Singlet Oxygen Generation in Lithium–Oxygen Batteries with Redox Mediators. Energy Environ. Sci. 2020, 13, 2870–2877.
(95) Bryantsev, V. S.; Giordani, V.; Walker, W.; Blanco, M.; Zecevic, S.; Sasaki, K.; Uddin, J.; Addison, D.; Chase, G. V. Predicting Solvent Stability in Aprotic Electrolyte Li–Air Batteries: Nucleophilic Substitution by the Superoxide Anion Radical (O2•–). J. Phys. Chem. A 2011, 115, 12399–12409.
(96) Black, R.; Oh, S. H.; Lee, J.-H.; Yim, T.; Adams, B.; Nazar, L. F. Screening for Superoxide Reactivity in Li–O2 Batteries: Effect on Li2O2/Lioh Crystallization. J. Am. Chem. Soc. 2012, 134, 2902–2905.
(97) Di Tommaso, S.; Rotureau, P.; Crescenzi, O.; Adamo, C. Oxidation Mechanism of Diethyl Ether: A Complex Process for a Simple Molecule. Phys. Chem. Chem. Phys. 2011, 13, 14636–14645.
(98) Freunberger, S. A.; Chen, Y.; Drewett, N. E.; Hardwick, L. J.; Bardé, F.; Bruce, P. G. The Lithium–Oxygen Battery with Ether-Based Electrolytes. Angew. Chem. Inter. Ed. 2011, 50, 8609–8613.
(99) Bryantsev, V. S.; Faglioni, F. Predicting Autoxidation Stability of Ether- and Amide-Based Electrolyte Solvents for Li–Air Batteries. J. Phys. Chem. A 2012, 116, 7128–7138.
(100) Mahne, N.; Fontaine, O.; Thotiyl, M. O.; Wilkening, M.; Freunberger, S. A. Mechanism and Performance of Lithium–Oxygen Batteries—a Perspective. Chem. Sci. 2017, 8, 6716–6729.
(101) Hassoun, J.; Croce, F.; Armand, M.; Scrosati, B. Investigation of the O2 Electrochemistry in a Polymer Electrolyte Solid-State Cell. Angew. Chem. Inter. Ed. 2011, 50, 2999–3002.
(102) McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.; Mori, T.; Scheffler, R.; Speidel, A.; Sherwood, M.; Luntz, A. C. Limitations in Rechargeability of Li–O2 Batteries and Possible Origins. J. Phys. Chem. Lett. 2012, 3, 3043–3047.
(103) Wandt, J.; Jakes, P.; Granwehr, J.; Gasteiger, H. A.; Eichel, R.-A. Singlet Oxygen Formation During the Charging Process of an Aprotic Lithium–Oxygen Battery. Angew. Chem. Inter. Ed. 2016, 55, 6892–6895.
(104) McCloskey, B. D.; Speidel, A.; Scheffler, R.; Miller, D. C.; Viswanathan, V.; Hummelshøj, J. S.; Nørskov, J. K.; Luntz, A. C. Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li–O2 Batteries. J. Phys. Chem. Lett. 2012, 3, 997–1001.
(105) Ottakam Thotiyl, M. M.; Freunberger, S. A.; Peng, Z.; Bruce, P. G. The Carbon Electrode in Nonaqueous Li–O2 Cells. J. Am. Chem. Soc. 2013, 135, 494–500.
(106) Kang, S.; Mo, Y.; Ong, S. P.; Ceder, G. A Facile Mechanism for Recharging Li2O2 in Li–O2 Batteries. Chem. Mater. 2013, 25, 3328–3336.
(107) Li, S.; Huang, D.; Zhang, B.; Xu, X.; Wang, M.; Yang, G.; Shen, Y. Flexible Supercapacitors Based on Bacterial Cellulose Paper Electrodes. Adv. Energy Mater. 2014, 4, 1301655.
(108) Luntz, A. C.; McCloskey, B. D. Li–Air Batteries: Importance of Singlet Oxygen. Nat. Energy 2017, 2, 17056.
(109) Gallant, B. M.; Mitchell, R. R.; Kwabi, D. G.; Zhou, J.; Zuin, L.; Thompson, C. V.; Shao-Horn, Y. Chemical and Morphological Changes of Li–O2 Battery Electrodes Upon Cycling. J. Phys. Chem. C 2012, 116, 20800–20805.
(110) Petit, Y. K.; Leypold, C.; Mahne, N.; Mourad, E.; Schafzahl, L.; Slugovc, C.; Borisov, S. M.; Freunberger, S. A. Dabconium: An Efficient and High-Voltage Stable Singlet Oxygen Quencher for Metal–O2 Cells. Angew. Chem. Inter. Ed. 2019, 58, 6535–6539.
(111) Kwak, W.-J.; Freunberger, S. A.; Kim, H.; Park, J.; Nguyen, T. T.; Jung, H.-G.; Byon, H. R.; Sun, Y.-K. Mutual Conservation of Redox Mediator and Singlet Oxygen Quencher in Lithium–Oxygen Batteries. ACS Catalysis 2019, 9, 9914–9922.
(112) Gowda, S. R.; Brunet, A.; Wallraff, G. M.; McCloskey, B. D. Implications of CO2 Contamination in Rechargeable Nonaqueous Li–O2 Batteries. J. Phys. Chem. Lett. 2013, 4, 276–279.
(113) Xu, S.; Das, S. K.; Archer, L. A. The Li–CO2 Battery: A Novel Method for CO2 Capture and Utilization. RSC Adv. 2013, 3, 6656–6660.
(114) Liu, B.; Sun, Y.; Liu, L.; Chen, J.; Yang, B.; Xu, S.; Yan, X. Recent Advances in Understanding Li–CO2 Electrochemistry. Energy Environ. Sci. 2019, 12, 887–922.
(115) Mu, X.; Pan, H.; He, P.; Zhou, H. Li–CO2 and Na–CO2 Batteries: Toward Greener and Sustainable Electrical Energy Storage. Adv. Mater. 2020, 32, 1903790.
(116) Qiao, Y.; Yi, J.; Wu, S.; Liu, Y.; Yang, S.; He, P.; Zhou, H. Li–CO2 Electrochemistry: A New Strategy for CO2 Fixation and Energy Storage. Joule 2017, 1, 359–370.
(117) Zhang, Z.; Zhang, Q.; Chen, Y.; Bao, J.; Zhou, X.; Xie, Z.; Wei, J.; Zhou, Z. The First Introduction of Graphene to Rechargeable Li–CO2 Batteries. Angew. Chem. 2015, 127, 6650–6653.
(118) Zhang, X.; Zhang, Q.; Zhang, Z.; Chen, Y.; Xie, Z.; Wei, J.; Zhou, Z. Rechargeable Li–CO2 Batteries with Carbon Nanotubes as Air Cathodes. Chem. Commun. 2015, 51, 14636–14639.
(119) Xiao, X.; Tan, P.; Zhu, X.; Dai, Y.; Cheng, C.; Ni, M. Investigation on the Discharge and Charge Behaviors of Li–CO2 Batteries with Carbon Nanotube Electrodes. ACS Sustain. Chem. Eng. 2020, 8, 9742–9750.
(120) Zhang, Z.; Yang, C.; Wu, S.; Wang, A.; Zhao, L.; Zhai, D.; Ren, B.; Cao, K.; Zhou, Z. Exploiting Synergistic Effect by Integrating Ruthenium–Copper Nanoparticles Highly Co‐Dispersed on Graphene as Efficient Air Cathodes for Li–CO2 Batteries. Adv. Energy Mater. 2019, 9, 1802805.
(121) Thoka, S.; Tsai, C. M.; Tong, Z.; Jena, A.; Wang, F. M.; Hsu, C. C.; Chang, H.; Hu, S. F.; Liu, R. S. Comparative Study of Li–CO2 and Na–CO2 Batteries with Ru@CNT as a Cathode Catalyst. ACS Appl. Mater. Interfaces 2020, 13, 480–490.
(122) Qiao, Y.; Xu, S.; Liu, Y.; Dai, J.; Xie, H.; Yao, Y.; Mu, X.; Chen, C.; Kline, D. J.; Hitz, E. M. Transient, in Situ Synthesis of Ultrafine Ruthenium Nanoparticles for a High-Rate Li–CO2 Battery. Energy Environ. Sci. 2019, 12, 1100–1107.
(123) Guo, Z.; Li, J.; Qi, H.; Sun, X.; Li, H.; Tamirat, A. G.; Liu, J.; Wang, Y.; Wang, L. A Highly Reversible Long‐Life Li–CO2 Battery with a RuP2‐Based Catalytic Cathode. Small 2019, 15, 1803246.
(124) Xu, S.; Chen, C.; Kuang, Y.; Song, J.; Gan, W.; Liu, B.; Hitz, E. M.; Connell, J. W.; Lin, Y.; Hu, L. Flexible Lithium–CO2 Battery with Ultrahigh Capacity and Stable Cycling. Energy Environ. Sci. 2018, 11, 3231–3237.
(125) Qiao, Y.; Liu, Y.; Chen, C.; Xie, H.; Yao, Y.; He, S.; Ping, W.; Liu, B.; Hu, L. 3d‐Printed Graphene Oxide Framework with Thermal Shock Synthesized Nanoparticles for Li–CO2 Batteries. Adv. Funct. Mater. 2018, 28, 1805899.
(126) Li, S.; Liu, Y.; Zhou, J.; Hong, S.; Dong, Y.; Wang, J.; Gao, X.; Qi, P.; Han, Y.; Wang, B. Monodispersed MnO Nanoparticles in Graphene—an Interconnected N-Doped 3d Carbon Framework as a Highly Efficient Gas Cathode in Li–CO2 Batteries. Energy Environ. Sci. 2019, 12, 1046–1054.
(127) Zhang, Z.; Wang, X. G.; Zhang, X.; Xie, Z.; Chen, Y. N.; Ma, L.; Peng, Z.; Zhou, Z. Verifying the Rechargeability of Li–CO2 Batteries on Working Cathodes of Ni Nanoparticles Highly Dispersed on N‐Doped Graphene. Adv. Sci. 2018, 5, 1700567.
(128) Xiao, X.; Zhang, Z.; Yu, W.; Shang, W.; Ma, Y.; Zhu, X.; Tan, P. Ultrafine Co-Doped NiO Nanoparticles Decorated on Carbon Nanotubes Improving the Electrochemical Performance and Cycling Stability of Li–CO2 Batteries. ACS Appl. Energy Mater. 2021, 4, 11858–11866.
(129) Hou, Y.; Wang, J.; Liu, L.; Liu, Y.; Chou, S.; Shi, D.; Liu, H.; Wu, Y.; Zhang, W.; Chen, J. Mo2C/CNT: An Efficient Catalyst for Rechargeable Li–CO2 Batteries. Adv. Funct. Mater. 2017, 27, 1700564.
(130) Ahmadiparidari, A.; Warburton, R. E.; Majidi, L.; Asadi, M.; Chamaani, A.; Jokisaari, J. R.; Rastegar, S.; Hemmat, Z.; Sayahpour, B.; Assary, R. S. A Long‐Cycle‐Life Lithium–CO2 Battery with Carbon Neutrality. Adv. Mater. 2019, 31, 1902518.
(131) Zhou, J.; Li, X.; Yang, C.; Li, Y.; Guo, K.; Cheng, J.; Yuan, D.; Song, C.; Lu, J.; Wang, B. A Quasi‐Solid‐State Flexible Fiber‐Shaped Li–CO2 Battery with Low Overpotential and High Energy Efficiency. Adv. Mater. 2019, 31, 1804439.
(132) Pipes, R.; He, J.; Bhargav, A.; Manthiram, A. Efficient Li–CO2 Batteries with Molybdenum Disulfide Nanosheets on Carbon Nanotubes as a Catalyst. ACS Appl. Energy Mater. 2019, 2, 8685–8694.
(133) Koppenol, W.; Rush, J. Reduction Potential of the Carbon Dioxide/Carbon Dioxide Radical Anion: A Comparison with Other C1 Radicals. J. Phys. Chem. 1987, 91, 4429–4430.
(134) Zhao, Z.; Su, Y.; Peng, Z. Probing Lithium Carbonate Formation in Trace-O2-Assisted Aprotic Li–CO2 Batteries Using in Situ Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. Lett. 2019, 10, 322–328.
(135) McCloskey, B. D.; Garcia, J. M.; Luntz, A. C. Chemical and Electrochemical Differences in Nonaqueous Li–O2 and Na–O2 Batteries. J. Phys. Chem. Lett. 2014, 5, 1230–1235.
(136) Wang, Y.; Wang, W.; Xie, J.; Wang, C.-H.; Yang, Y.-W.; Lu, Y.-C. Electrochemical Reduction of CO2 in Ionic Liquid: Mechanistic Study of Li–CO2 Batteries Via in Situ Ambient Pressure X-Ray Photoelectron Spectroscopy. Nano Energy 2021, 83, 105830.
(137) Horwitz, G.; Calvo, E. J.; Méndez De Leo, L. P.; de la Llave, E. Electrochemical Stability of Glyme-Based Electrolytes for Li–O2 Batteries Studied by in Situ Infrared Spectroscopy. Phys. Chem. Chem. Phys. 2020, 22, 16615–16623.
(138) Iputera, K.; Huang, J. Y.; Haw, S. C.; Chen, J. M.; Hu, S. F.; Liu, R. S. Revealing the Absence of Carbon in Aprotic Li–CO2 Batteries: A Mechanism Study toward CO2 Reduction under a Pure CO2 Environment. J. Mater. Chem. A 2022, 10, 3460–3468.
(139) Zhao, S.; Qin, B.; Chan, K. Y.; Li, C. Y. V.; Li, F. Recent Development of Aprotic Na− O2 Batteries. Batter. Supercaps 2019, 2, 725–742.
(140) Zheng, Z.; Wu, C.; Gu, Q.; Konstantinov, K.; Wang, J. Research Progress and Future Perspectives on Rechargeable Na–O2 and Na–CO2 Batteries. Energy Environ. Mater. 2021, 4, 158–177.
(141) Bi, X.; Wang, R.; Amine, K.; Lu, J. A Critical Review on Superoxide‐Based Sodium–Oxygen Batteries. Small Methods 2019, 3, 1800247.
(142) Hartmann, P.; Bender, C. L.; Sann, J.; Dürr, A. K.; Jansen, M.; Janek, J.; Adelhelm, P. A Comprehensive Study on the Cell Chemistry of the Sodium Superoxide (NaO2) Battery. Phys. Chem. Chem. Phys. 2013, 15, 11661–11672.
(143) Hartmann, P.; Heinemann, M.; Bender, C. L.; Graf, K.; Baumann, R.-P.; Adelhelm, P.; Heiliger, C.; Janek, J. r. Discharge and Charge Reaction Paths in Sodium–Oxygen Batteries: Does NaO2 Form by Direct Electrochemical Growth or by Precipitation from Solution? J. Phys. Chem. C 2015, 119, 22778–22786.
(144) Aldous, I. M.; Hardwick, L. J. Solvent‐Mediated Control of the Electrochemical Discharge Products of Non‐Aqueous Sodium–Oxygen Electrochemistry. Angew. Chem. Inter. Ed. 2016, 55, 8254–8257.
(145) Aldous, I. M.; Hardwick, L. J. Growth and Dissolution of NaO2 in an Ether-Based Electrolyte as the Discharge Product in the Na–O2 Cell. Chem. Commun. 2018, 54, 3444–3447.
(146) Sheng, C.; Yu, F.; Wu, Y.; Peng, Z.; Chen, Y. Disproportionation of Sodium Superoxide in Metal–Air Batteries. Angew. Chem. 2018, 130, 10054–10058.
(147) Aetukuri, N. B.; Jones, G. O.; Thompson, L. E.; Ozgit-Akgun, C.; Akca, E.; Demirci, G.; Kim, H.-C.; Bethune, D. S.; Virwani, K.; Wallraff, G. M. Ion Pairing Limits Crystal Growth in Metal–Oxygen Batteries. ACS Energy Lett. 2018, 3, 2342–2348.
(148) Liu, W.; Sun, Q.; Yang, Y.; Xie, J.-Y.; Fu, Z.-W. An Enhanced Electrochemical Performance of a Sodium–Air Battery with Graphene Nanosheets as Air Electrode Catalysts. Chem. Commun. 2013, 49, 1951–1953.
(149) Chang, S.; Hou, M.; Xu, B.; Liang, F.; Qiu, X.; Yao, Y.; Qu, T.; Ma, W.; Yang, B.; Dai, Y. High‐Performance Quasi‐Solid‐State Na–Air Battery Via Gel Cathode by Confining Moisture. Adv. Funct. Mater. 2021, 31, 2011151.
(150) Dai, A.; Li, Q.; Liu, T.; Amine, K.; Lu, J. Fundamental Understanding of Water‐Induced Mechanisms in Li–O2 Batteries: Recent Developments and Perspectives. Adv. Mater. 2019, 31, 1805602.
(151) Jiang, C.; Zhang, H.; Li, P.; Zhan, X.; Liu, Z.; Wang, L.; Mao, B.; Li, Q.; Wen, Z.; Peng, Z. A Highly Stable All‐Solid‐State Na–O2/H2O Battery with Low Overpotential Based on Sodium Hydroxide. Adv. Funct. Mater. 2022, 32, 2202518.
(152) Liu, Q.; Yang, T.; Du, C.; Tang, Y.; Sun, Y.; Jia, P.; Chen, J.; Ye, H.; Shen, T.; Peng, Q. In Situ Imaging the Oxygen Reduction Reactions of Solid State Na–O2 Batteries with CuO Nanowires as the Air Cathode. Nano Lett. 2018, 18, 3723–3730.
(153) Ma, X.; Dong, D.; Guo, S.; Cheng, N.; Zhang, B.; Ge, B. In Situ Transmission Electron Microscopy for Sodium Batteries. Adv. Funct. Mater. 2024, 2400779.
(154) Liu, Q.; Geng, L.; Yang, T.; Tang, Y.; Jia, P.; Li, Y.; Li, H.; Shen, T.; Zhang, L.; Huang, J. In-Situ Imaging Electrocatalysis in a Na–O2 Battery with Au-Coated MnO2 Nanowires Air Cathode. Energy Storage Mater. 2019, 19, 48–55.
(155) Jia, P.; Yang, T.; Liu, Q.; Yan, J.; Shen, T.; Zhang, L.; Liu, Y.; Zhao, X.; Gao, Z.; Wang, J. In-Situ Imaging Co3O4 Catalyzed Oxygen Reduction and Evolution Reactions in a Solid State Na–O2 Battery. Nano Energy 2020, 77, 105289.
(156) Kwak, W.-J.; Luo, L.; Jung, H.-G.; Wang, C.; Sun, Y.-K. Revealing the Reaction Mechanism of Na–O2 Batteries Using Environmental Transmission Electron Microscopy. ACS Energy Lett. 2018, 3, 393–399.
(157) Tian, Y.; Zeng, G.; Rutt, A.; Shi, T.; Kim, H.; Wang, J.; Koettgen, J.; Sun, Y.; Ouyang, B.; Chen, T. Promises and Challenges of Next-Generation “Beyond Li-Ion” Batteries for Electric Vehicles and Grid Decarbonization. Chem. Rev. 2020, 121, 1623–1669.
(158) Kwak, W.-J.; Rosy; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y.-K.; Frimer, A. A. Lithium–Oxygen Batteries and Related Systems: Potential, Status, and Future. Chem. Rev. 2020, 120, 6626–6683.
(159) Wang, Y.; Lu, Y.-C. Nonaqueous Lithium–Oxygen Batteries: Reaction Mechanism and Critical Open Questions. Energy Storage Mater. 2020, 28, 235–246.
(160) Hu, X.; Sun, J.; Li, Z.; Zhao, Q.; Chen, C.; Chen, J. Rechargeable Room‐Temperature Na–CO2 Batteries. Angew. Chem. Inter. Ed. 2016, 55, 6482–6486.
(161) Xu, B.; Zhang, D.; Chang, S.; Hou, M.; Peng, C.; Xue, D.; Yang, B.; Lei, Y.; Liang, F. Fabrication of Long-Life Quasi-Solid-State Na–CO2 Battery by Formation of Na2C2O4 Discharge Product. Cell. Rep. 2022, 3, 100973.
(162) Guo, L.; Li, B.; Thirumal, V.; Song, J. Advanced Rechargeable Na–CO2 Batteries Enabled by a Ruthenium@Porous Carbon Composite Cathode with Enhanced Na2CO3 Reversibility. Chem. Commun. 2019, 55, 7946–7949.
(163) Xu, C.; Zhan, J.; Wang, Z.; Fang, X.; Chen, J.; Liang, F.; Zhao, H.; Lei, Y. Biomass-Derived Highly Dispersed Co/Co9S8 Nanoparticles Encapsulated in S, N-Co-Doped Hierarchically Porous Carbon as an Efficient Catalyst for Hybrid Na–CO2 Batteries. Mater. Today Energy 2021, 19, 100594.
(164) Fang, C.; Luo, J.; Jin, C.; Yuan, H.; Sheng, O.; Huang, H.; Gan, Y.; Xia, Y.; Liang, C.; Zhang, J. Enhancing Catalyzed Decomposition of Na2CO3 with Co2mnox Nanowire-Decorated Carbon Fibers for Advanced Na–CO2 Batteries. ACS Appl. Mater. Interfaces 2018, 10, 17240–17248.
(165) Bekaert, L.; Akatsuka, S.; Tanibata, N.; De Proft, F.; Hubin, A.; Mamme, M. H.; Nakayama, M. Assessing the Reactivity of the Na3PS4 Solid-State Electrolyte with the Sodium Metal Negative Electrode Using Total Trajectory Analysis with Neural-Network Potential Molecular Dynamics. J. Phys. Chem. C 2023, 127, 8503–8514.
(166) Bonilla, M. R.; García Daza, F. n. A.; Ranque, P.; Aguesse, F.; Carrasco, J.; Akhmatskaya, E. Unveiling Interfacial Li-Ion Dynamics in Li7La3Zr2O12/Peo (LiTFSI) Composite Polymer-Ceramic Solid Electrolytes for All-Solid-State Lithium Batteries. ACS Appl. Mater. Interfaces 2021, 13, 30653–30667.
(167) Takamoto, S.; Shinagawa, C.; Motoki, D.; Nakago, K.; Li, W.; Kurata, I.; Watanabe, T.; Yayama, Y.; Iriguchi, H.; Asano, Y. Towards Universal Neural Network Potential for Material Discovery Applicable to Arbitrary Combination of 45 Elements. Nat. Commun. 2022, 13, 2991.
(168) Larcher, D.; Tarascon, J.-M. Towards Greener and More Sustainable Batteries for Electrical Energy Storage. Nat. Chem. 2015, 7, 19–29.
(169) Gaines, L.; Richa, K.; Spangenberger, J. Key Issues for Li-Ion Battery Recycling. MRS Energy Sustain. 2018, 5, E14.
(170) Larouche, F.; Tedjar, F.; Amouzegar, K.; Houlachi, G.; Bouchard, P.; Demopoulos, G. P.; Zaghib, K. Progress and Status of Hydrometallurgical and Direct Recycling of Li-Ion Batteries and Beyond. Mater. 2020, 13, 801.
(171) Titirici, M. M. Sustainable Batteries—Quo Vadis? Adv. Energy Mater. 2021, 11, 2003700.
(172) Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S. Recycling Lithium-Ion Batteries from Electric Vehicles. Nature 2019, 575, 75–86.
(173) Zeng, X.; Li, J.; Singh, N. Recycling of Spent Lithium-Ion Battery: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 1129–1165.
(174) Shui, J.-L.; Wang, H.-H.; Liu, D.-J. Degradation and Revival of Li–O2 Battery Cathode. Electrochem. Commun. 2013, 34, 45–47.
(175) Karkera, G.; Prakash, A. S. Decoupling the Cumulative Contributions of Capacity Fade in Ethereal-Based Li–O2 Batteries. ACS Appl. Mater. Interfaces 2019, 11, 27870–27881.
(176) Zhu, C.; Du, L.; Luo, J.; Tang, H.; Cui, Z.; Song, H.; Liao, S. A Renewable Wood-Derived Cathode for Li–O2 Batteries. J. Mater. Chem. A 2018, 6, 14291–14298.
(177) Dong, Q.; Li, T.; Yao, Y.; Wang, X.; He, S.; Li, J.; Luo, J.; Zhang, H.; Pei, Y.; Zheng, C. A General Method for Regenerating Catalytic Electrodes. Joule 2020, 4, 2374–2386.
(178) Nolan, A. M.; Zhu, Y.; He, X.; Bai, Q.; Mo, Y. Computation-Accelerated Design of Materials and Interfaces for All-Solid-State Lithium-Ion Batteries. Joule 2018, 2, 2016–2046.
(179) Rakov, D. A.; Chen, F.; Ferdousi, S. A.; Li, H.; Pathirana, T.; Simonov, A. N.; Howlett, P. C.; Atkin, R.; Forsyth, M. Engineering High-Energy-Density Sodium Battery Anodes for Improved Cycling with Superconcentrated Ionic-Liquid Electrolytes. Nat. Mater. 2020, 19, 1096–1101.
(180) Bedrov, D.; Piquemal, J.-P.; Borodin, O.; MacKerell, A. D., Jr.; Roux, B.; Schröder, C. Molecular Dynamics Simulations of Ionic Liquids and Electrolytes Using Polarizable Force Fields. Chem. Rev. 2019, 119, 7940–7995.
(181) Yao, N.; Chen, X.; Fu, Z.-H.; Zhang, Q. Applying Classical, Ab Initio, and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chem. Rev. 2022, 122, 10970–11021.
(182) Alder, B. J.; Wainwright, T. E. Phase Transition for a Hard Sphere System. Chem. Phys. 1957, 27, 1208.
(183) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and Testing of the Opls All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236.
(184) Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Mackerell Jr., A. D. Charmm General Force Field: A Force Field for Drug-Like Molecules Compatible with the Charmm All-Atom Additive Biological Force Fields. J. Comput. Chem. 2010, 31, 671–690.
(185) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197.
(186) Gasteiger, J.; Zupan, J. Neural Networks in Chemistry. Angew. Chem. Inter. Ed. 1993, 32, 503–527.
(187) Yang, S.; Qiao, Y.; He, P.; Liu, Y.; Cheng, Z.; Zhu, J.-j.; Zhou, H. A Reversible Lithium–CO2 Battery with Ru Nanoparticles as a Cathode Catalyst. Energy Environ. Sci. 2017, 10, 972–978.
(188) Chen, C. J.; Huang, C. S.; Huang, Y. C.; Wang, F. M.; Wang, X. C.; Wu, C. C.; Chang, W. S.; Dong, C. L.; Yin, L. C.; Liu, R. S. Catalytically Active Site Identification of Molybdenum Disulfide as Gas Cathode in a Nonaqueous Li–CO2 Battery. ACS Appl. Mater. Interfaces 2021, 13, 6156–6167.
(189) Zhang, X.; Wang, C.; Li, H.; Wang, X.-G.; Chen, Y.-N.; Xie, Z.; Zhou, Z. High Performance Li–CO2 Batteries with NiO–CNT Cathodes. J. Mater. Chem. A 2018, 6, 2792–2796.
(190) Larsen, A. H.; Mortensen, J. J.; Blomqvist, J.; Castelli, I. E.; Christensen, R.; Dułak, M.; Friis, J.; Groves, M. N.; Hammer, B.; Hargus, C. The Atomic Simulation Environment—a Python Library for Working with Atoms. J. Phys. Condens. Matter. 2017, 29, 273002.
(191) Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2018, 95, 197−206.
(192) Bard, A. J.; Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications. John Wiley & Sons, Inc.: 2001.
(193) Binninger, T.; Fabbri, E.; Kötz, R.; Schmidt, T. J. Determination of the Electrochemically Active Surface Area of Metal-Oxide Supported Platinum Catalyst. J. Electrochem. Soc. 2013, 161, H121.
(194) Robinson, J. W.; Frame, E. M. S.; II, G. M. F., Instrumental Analytical Chemistry: An Introduction. CRC Press: 2021.
(195) Teo, B.-K.; Joy, D. C., EXAFS Spectroscopy: Techniques and Applications. 1981.
(196) West, A. R., Solid State Chemistry and Its Application. John Wiley & Sons, Ltd. : 2014.
(197) Angamuthu, R.; Byers, P.; Lutz, M.; Spek, A. L.; Bouwman, E. Electrocatalytic CO2 Conversion to Oxalate by a Copper Complex. Science 2010, 327, 313–315.
(198) Rudolph, M.; Dautz, S.; Jäger, E.-G. Macrocyclic [N42−] Coordinated Nickel Complexes as Catalysts for the Formation of Oxalate by Electrochemical Reduction of Carbon Dioxide. J. Am. Chem. Soc. 2000, 122, 10821–10830.
(199) Li, J.; Dai, A.; Amine, K.; Lu, J. Correlating Catalyst Design and Discharged Product to Reduce Overpotential in Li–CO2 Batteries. Small 2021, 17, 2007760.
(200) Egerton, R.; Li, P.; Malac, M. Radiation Damage in the TEM and SEM. Micron 2004, 35, 399–409.
(201) Ushakova, E. E.; Frolov, A.; Reveguk, A. A.; Usachov, D. Y.; Itkis, D. M.; Yashina, L. V. Solid Electrolyte Interface Formation between Lithium and Peo-Based Electrolyte. Appl. Surf. Sci. 2022, 589, 153014.
(202) Schiros, T.; Nordlund, D.; Pálová, L.; Prezzi, D.; Zhao, L.; Kim, K. S.; Wurstbauer, U.; Gutiérrez, C.; Delongchamp, D.; Jaye, C. Connecting Dopant Bond Type with Electronic Structure in N-Doped Graphene. Nano Lett. 2012, 12, 4025–4031.
(203) Lu, Q.; Jiao, F. Electrochemical CO2 Reduction: Electrocatalyst, Reaction Mechanism, and Process Engineering. Nano Energy 2016, 29, 439–456.
(204) Xie, J.; Liu, Q.; Huang, Y.; Wu, M.; Wang, Y. A Porous Zn Cathode for Li–CO2 Batteries Generating Fuel-Gas CO. J. Mater. Chem. A 2018, 6, 13952–13958.
(205) Wang, L.; Zhang, Y.; Liu, Z.; Guo, L.; Peng, Z. Understanding Oxygen Electrochemistry in Aprotic LiO2 Batteries. Green Energy Environ. 2017, 2, 186–203.
(206) Vassiliev, Y. B.; Bagotzky, V.; Khazova, O.; Mayorova, N. Electroreduction of Carbon Dioxide: Part II. The Mechanism of Reduction in Aprotic Solvents. J. Electroanal. Chem. Interf. Electrochem. 1985, 189, 295–309.
(207) Zhao, Z.; Huang, J.; Peng, Z. Achilles’ Heel of Lithium–Air Batteries: Lithium Carbonate. Angew. Chem. Inter. Ed. 2018, 57, 3874–3886.
(208) Qiao, Y.; Wu, S.; Yi, J.; Sun, Y.; Guo, S.; Yang, S.; He, P.; Zhou, H. From O2− to HO2−: Reducing by‐Products and Overpotential in Li–O2 Batteries by Water Addition. Angew. Chem. 2017, 129, 5042–5046.
(209) Xue, H.; Gong, H.; Lu, X.; Gao, B.; Wang, T.; He, J.; Yamauchi, Y.; Sasaki, T.; Ma, R. Aqueous Formate‐Based Li–CO2 Battery with Low Charge Overpotential and High Working Voltage. Adv. Energy Mater. 2021, 11, 2101630.
(210) Pérez, O.; Odio, O.; Reguera, E. Xps as a Probe for the Bonding Nature in Metal Acetates. New J. Chem. 2022, 46, 11255–11265.
(211) Wu, F.; Xing, Y.; Lai, J.; Zhang, X.; Ye, Y.; Qian, J.; Li, L.; Chen, R. Micrometer‐Sized RuO2 Catalysts Contributing to Formation of Amorphous Na‐Deficient Sodium Peroxide in Na–O2 Batteries. Adv. Funct. Mater. 2017, 27, 1700632.
(212) Li, L.; Xu, R.; Zhang, L.; Zhang, Z.; Yang, M.; Liu, D.; Yan, X.; Zhou, A. O‐Tailored Microstructure‐Engineered Interface toward Advanced Room Temperature All‐Solid‐State Na Batteries. Adv. Funct. Mater. 2022, 32, 2203095.
(213) Schwenke, K. U.; Herranz, J.; Gasteiger, H. A.; Piana, M. Reactivity of the Ionic Liquid Pyr14tfsi with Superoxide Radicals Generated from KO2 or by Contact of O2 with Li7Ti5O12. J. Electrochem. Soc. 2015, 162, A905.
(214) Preibisch, Y.; Horsthemke, F.; Winter, M.; Nowak, S.; Best, A. S. Is the Cation Innocent? An Analytical Approach on the Cationic Decomposition Behavior of N-Butyl-N-Methylpyrrolidinium Bis(Trifluoromethanesulfonyl)Imide in Contact with Lithium Metal. Chem. Mater. 2020, 32, 2389–2398.
(215) Dohmann, J. F.; Horsthemke, F.; Küpers, V.; Bloch, S.; Preibisch, Y.; Kolesnikov, A.; Kolek, M.; Stan, M. C.; Winter, M.; Bieker, P. Galvanic Couples in Ionic Liquid-Based Electrolyte Systems for Lithium Metal Batteries—an Overlooked Cause of Galvanic Corrosion? Adv. Energy Mater. 2021, 11, 2101021.
(216) Momma, K.; Izumi, F. VESTA: A Three-Dimensional Visualization System for Electronic and Structural Analysis. J. Appl. Crystallogr. 2008, 41, 653–658.
(217) Stukowski, A. Visualization and Analysis of Atomistic Simulation Data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 015012.
(218) Liu, Q.; Tang, Y.; Sun, H.; Yang, T.; Sun, Y.; Du, C.; Jia, P.; Ye, H.; Chen, J.; Peng, Q. In Situ Electrochemical Study of Na–O2/CO2 Batteries in an Environmental Transmission Electron Microscope. ACS nano 2020, 14, 13232–13245.
(219) Xu, C.; Dong, Y.; Shen, Y.; Zhao, H.; Li, L.; Shao, G.; Lei, Y. Fundamental Understanding of Nonaqueous and Hybrid Na–CO2 Batteries: Challenges and Perspectives. Small 2023, 2206445.
(220) Dinh, C.-T.; Jain, A.; de Arquer, F. P. G.; De Luna, P.; Li, J.; Wang, N.; Zheng, X.; Cai, J.; Gregory, B. Z.; Voznyy, O. Multi-Site Electrocatalysts for Hydrogen Evolution in Neutral Media by Destabilization of Water Molecules. Nat. Energy 2019, 4, 107–114.
(221) Li, J.; Abbas, S. U.; Wang, H.; Zhang, Z.; Hu, W. Recent Advances in Interface Engineering for Electrocatalytic CO2 Reduction Reaction. Nano-Micro Lett. 2021, 13, 1–35.
(222) Xiao, N.; Rooney, R. T.; Gewirth, A. A.; Wu, Y. The Long‐Term Stability of KO2 in K–O2 Batteries. Angew. Chem. Inter. Ed. 2018, 57, 1227–1231.
(223) Iputera, K.; Fu, Y. L.; Li, L.; Hu, S. F.; Wei, D. H.; Liu, R. S. H2O Wash: A Simple Method toward Eliminating Discharge Products and Regenerating Cathodes of Li–O2 Batteries. Green Chem. 2022, 24, 9755–9762.
(224) Liu, J.; Li, Q.; Zou, Y.; Qian, Q.; Jin, Y.; Li, G.; Jiang, K.; Fan, S. The Dependence of Graphene Raman D-Band on Carrier Density. Nano Lett. 2013, 13, 6170–6175.
(225) Qiao, R.; Chuang, Y.-D.; Yan, S.; Yang, W. Soft X-Ray Irradiation Effects of Li2O2, Li2CO3 and Li2O Revealed by Absorption Spectroscopy. PloS one 2012, 7, e49182.
(226) Heymann, K.; Lehmann, J.; Solomon, D.; Schmidt, M. W.; Regier, T. C 1s K-Edge near Edge X-Ray Absorption Fine Structure (NEXAFS) Spectroscopy for Characterizing Functional Group Chemistry of Black Carbon. Org. Geochem. 2011, 42, 1055–1064.
(227) Chang, H.-W.; Lu, Y.-R.; Chen, J.-L.; Chen, C.-L.; Lee, J.-F.; Chen, J.-M.; Tsai, Y.-C.; Chang, C.-M.; Yeh, P.-H.; Chou, W.-C. Nanoflaky MnO2/Functionalized Carbon Nanotubes for Supercapacitors: An in Situ X-Ray Absorption Spectroscopic Investigation. Nanoscale 2015, 7, 1725–1735.
(228) Zhang, S. S.; Foster, D.; Read, J. Discharge Characteristic of a Non-Aqueous Electrolyte Li/O2 Battery. J. Power Sources 2010, 195, 1235–1240.
(229) Wang, F.; Li, X. Pore-Scale Simulations of Porous Electrodes of Li–O2 Batteries at Different Saturation Levels. ACS Appl. Mater. Interfaces 2018, 10, 26222–26232.
(230) Wang, H.; Wang, X.; Li, M.; Zheng, L.; Guan, D.; Huang, X.; Xu, J.; Yu, J. Porous Materials Applied in Nonaqueous Li–O2 Batteries: Status and Perspectives. Adv. Mater. 2020, 32, 2002559.
(231) Biemolt, J.; Rothenberg, G.; Yan, N. Understanding the Roles of Amorphous Domains and Oxygen-Containing Groups of Nitrogen-Doped Carbon in Oxygen Reduction Catalysis: Toward Superior Activity. Inorg. Chem. Front. 2020, 7, 177–185.
(232) Mahne, N.; Schafzahl, B.; Leypold, C.; Leypold, M.; Grumm, S.; Leitgeb, A.; Strohmeier, G. A.; Wilkening, M.; Fontaine, O.; Kramer, D. Singlet Oxygen Generation as a Major Cause for Parasitic Reactions During Cycling of Aprotic Lithium–Oxygen Batteries. Nat. Energy 2017, 2, 1–9.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92813-
dc.description.abstract本研究乃探討Li–CO2與Na–CO2電池中陰極反應之放電機制,並進行Li–O2電池中空氣陰極之再生研究。Li–CO2電池因其卓越之能量密度與碳利用而備受推崇,然而對其陰極反應之深入理解仍然難以確定。傳統觀點認為,CO2還原與碳作為還原產物相關,反應式為:3CO2 + 4Li+ + 4e− → 2Li2CO3 + C,E° = 2.8 V vs. Li+/Li。然而,現有研究中對碳之形成證據有限。反應限制電位步驟涉及CO2 + e− → CO2− (E° = 1.1 V vs. Li+/Li),與2.6 V之工作電位形成鮮明對比,故須重新評估。此外,2.8 V之氧化還原電位之推估存在缺陷,因其涵蓋不涉及電子轉移之化學反應。此些觀察結果均令人懷疑所提出電池反應之正確性。本研究提出新觀點,認為O2與H2O參與電化學反應,導致過往所報導之高工作電位。經由軟X光吸收光譜之研究,證明僅形成Li2CO3作為放電產物。此外,經由研究發現,僅於較低之1.1 V電位下,方發生純CO2還原,產物非不定型碳而為CO。故於研究Li–CO2電池時,必須全面考慮O2與H2O之可能污染,對放電產物進行仔細鑑定以制定正確之反應方程。Na–CO2電池同樣以其高能量密度存儲與CO2利用而著名,然於闡明其反應機制與提高電池性能方面面臨類似之挑戰。經由採用原位環境下之X光光電子能譜(APXPS),本研究揭示CO2還原反應機制,其與以往研究不同,本研究發現純CO2環境表現出較差之電化學活性。引入O2與H2O等添加劑可增強CO2之反應性。然二者產生之放電產物均使離子液體分解生成烯類,此乃過往Na–CO2電池中產生元素碳訊號之可能來源。最後本研究將焦點轉向Li–O2電池回收。其中已廣泛研究空氣陰極之發展,然對其再生之關注有限。本研究引入一種水洗再生方法,作為再生空氣陰極並為其進行鑑定之有效技術。該方法成功地將兩種類型之空氣陰極再生至少五循環,而不導致容量下降。於去除放電產物後,更容易觀察到結構與化學/電化學變化。再生後,容積膨脹與表面官能基化之碳為主要觀察現象。此外,經處理後具LiOH之流出物可用於CO2捕獲而形成Li2CO3,有助於減少CO2排放。此項研究強調Li–O2電池不僅可作為高能量密度設備,更可作為實現環保之解決方案。zh_TW
dc.description.abstractThis study is to explore the discharge mechanism of the cathode reaction in Li–CO2 and Na–CO2 batteries, as well as the regeneration of air cathodes in Li–O2 batteries. Li–CO2 batteries are highly regarded for their remarkable energy density and carbon utilization, yet a comprehensive understanding of their cathodic reaction remains elusive. The conventional perspective proposed CO2 reduction with carbon as the reduced product, with the reaction formula: 3CO2 + 4Li+ + 4e− → 2Li2CO3 + C (Eeq = 2.8 V vs. Li+/Li). However, the substantiation of carbon formation is limited in existing studies. The potential-determining step involving CO2 + e− → CO2− (Eeq = 1.1 V vs. Li+/Li) stands in stark contrast to the working potential of 2.6 V, thus prompting a reevaluation. Moreover, the redox potential at 2.8 V is flawed, considering it encompasses a chemical reaction without electron transfer. These observations cast doubt on the correctness of the proposed cell reaction. This study introduces a novel perspective, suggesting the involvement of O2 and H2O in the electrochemical reaction, leading to the high working potential. The exclusive formation of Li2CO3 as the discharge product is confirmed through soft X-ray absorption spectroscopy. Additionally, it is found that sole CO2 reduction occurs at a lower potential of 1.1 V, yielding CO instead of C as the discharge product. Thus, a comprehensive examination of O2 and H2O contamination is essential when investigating Li–CO2 batteries, and careful characterization of the discharge product is crucial for accurate reaction formulation.
The Na–CO2 battery, renowned for its high-energy-density storage and CO2 utilization, faces analogous challenges in elucidating its reaction mechanism and enhancing battery performance. Employing in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), this study unravels the CO2 reduction reaction mechanism. Unlike previous studies, this study reveals that pure CO2 environments exhibit poor electrochemical activity. Introducing additives such as O2 and H2O enhances CO2 reactivity leads to the degradation of ionic liquid and the formation of alkenes. The side products (alkenes) then generate the misleading Csp2 signals which can be generated by elemental carbon. Therefore, carbon can not be formed even with the presence of additives such as O2 and H2O.
The focus shifts to Li–O2 batteries, where the development of air cathodes has been extensively studied, yet attention is limited to recycling these batteries. The thesis introduces an H2O-wash method as a potent technique for regenerating air cathodes and preparing them for characterization. This method successfully regenerates two types of air cathodes for at least five cycles without capacity degradation. Structural and chemical/electrochemical changes are readily observable following discharge product removal. Volume expansion and functionalized carbon are evident post-regeneration. Furthermore, the LiOH-containing effluent resulting from the treatment can be harnessed for CO2 capture, contributing to the reduction of CO2 emissions. This study underscores that Li–O2 batteries can serve not only as high-energy-density devices but also as a solution for a more environmentally sustainable future.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-01T16:13:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-01T16:13:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
謝辭 II
摘要 IV
Abstract VI
Contents VIII
Figure Contents XI
Table Contents XXI
Abbreviation List XXII
Chapter 1 Introduction 1
1.1 Energy Storage and Li-Ion Batteries 1
1.2 Metal–Air Batteries 7
1.3 Li–O2 batteries 9
1.3.1 General structure of Li–O2 battery 9
1.3.2 Early developments 10
1.3.3 The main challenge—overpotential 11
1.3.4 Heterogeneous catalysts 15
1.3.5 Homogeneous catalysts 21
1.3.6 Side reactions 32
1.4 Li–CO2 Batteries 36
1.4.1 Early developments 36
1.4.2 Debates for the mechanism 37
1.5 Na–O2 and Na–CO2 Batteries 41
1.5.1 Na–O2 batteries 41
1.5.2 Na–CO2 batteries 44
1.6 The Recycle of (Alkali) Metal–O2 Batteries 47
1.7 Molecular Dynamics 50
1.7.1 Classical Molecular Dynamics (CMD) 51
1.7.2 Ab Initio Molecular Dynamics (AIMD) 52
1.7.3 Machine Learning Molecular Dynamics (MLMD) 52
1.8 Research Motivation 52
Chapter 2 Experimental Approaches and Techniques 55
2.1 Chemicals and Materials 55
2.2 Experimental Procedure and Supporting Discussions 56
2.2.1 The discharge mechanism of Li–CO2 batteries 56
2.2.2 In situ APXPS study on Na–CO2 batteries 61
2.2.3 Regeneration of air cathodes 63
2.3 Characterization Techniques 67
2.3.1 Electrochemical characterizations 67
2.3.2 Chemical characterizations 75
2.3.3 Physical characterizations 80
Chapter 3 The Mechnasim of Li–CO2 Batteries 93
3.1 The Mechanism Proposed for Li–CO2 Battery 93
3.2 Characterization of Carbon Formation 94
3.3 Revealing the Reactions above 2 V in Li–CO2 Batteries 96
3.4 The Reduction Reactions under Pure CO2 Atmosphere 105
3.5 Summary 116
Chapter 4 The Mechanism of Na–CO2 Batteries 118
4.1 Na–CO2 System 119
4.2 Na–O2/CO2 System 126
4.3 Na–H2O/CO2 System 130
4.4 Summary 135
Chapter 5 The Recycle of Li–O2 Batteries 137
5.1 Effectiveness of H2O-Wash Treatment 137
5.2 Regeneration Tests with Carbon Black (CB) and CNT Cathodes 143
5.3 Regeneration Tests with CNT Cathodes Underwent Cycle Tests 155
5.4 Proposed Recycling of Li–O2 Batteries 157
5.5 Summary 158
Chapter 6 Conclusions 160
References 162
Publications in International Journals 192
Patents 194
-
dc.language.isoen-
dc.subject鋰二氧化碳電池zh_TW
dc.subject電化學zh_TW
dc.subject電池回收zh_TW
dc.subject鋰氧氣電池zh_TW
dc.subject鈉二氧化碳電池zh_TW
dc.subjectElectrochemistryen
dc.subjectLi–CO2 batteriesen
dc.subjectBattery recycleen
dc.subjectLi–O2 batteriesen
dc.subjectNa–CO2 batteriesen
dc.title金屬空氣電池之反應機制與其回收應用zh_TW
dc.titleThe Mechanism and Recycle of Metal–Air Batteriesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.coadvisor劉柏宏zh_TW
dc.contributor.coadvisorBo-Hong Liuen
dc.contributor.oralexamcommittee梁文傑;陳錦明;陳金銘;魏大華;洪太峰zh_TW
dc.contributor.oralexamcommitteeMan-kit Leung;Jin-Ming Chen;Jin-Ming Chen;Da-Hua Wei;Tai-Feng Hungen
dc.subject.keyword電化學,鋰二氧化碳電池,鈉二氧化碳電池,鋰氧氣電池,電池回收,zh_TW
dc.subject.keywordElectrochemistry,Li–CO2 batteries,Na–CO2 batteries,Li–O2 batteries,Battery recycle,en
dc.relation.page194-
dc.identifier.doi10.6342/NTU202401337-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-06-26-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf9.68 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved