Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92802
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林偉傑zh_TW
dc.contributor.advisorWai-Kit Lamen
dc.contributor.author周子涵zh_TW
dc.contributor.authorTzu-Han Chouen
dc.date.accessioned2024-07-01T16:10:40Z-
dc.date.available2024-07-02-
dc.date.copyright2024-07-01-
dc.date.issued2024-
dc.date.submitted2024-06-06-
dc.identifier.citation[1] Michael Aizenman and David J. Barsky. Sharpness of the phase transition in percolation models. Comm. Math. Phys., 108(3):489–526, 1987.
[2] Antonio Auffinger, Michael Damron, and Jack Hanson. 50 years of first-passage percolation, volume 68. American Mathematical Soc., 2017.
[3] Antonio Auffinger and Si Tang. On the time constant of high dimensional first passage percolation. Electron. J. Probab., 21:Paper No. 24, 23, 2016.
[4] Raphaël Cerf and Marie Théret. Weak shape theorem in first passage percolation with infinite passage times. Ann. Inst. Henri Poincaré Probab. Stat., 52(3):1351–1381, 2016.
[5] J Theodore Cox and Richard Durrett. Some limit theorems for percolation processes with necessary and sufficient conditions. The Annals of Probability, pages 583–603, 1981.
[6] Michael Damron, Julian Gold, Wai-Kit Lam, and Xiao Shen. On the number and size of holes in the growing ball of first-passage percolation. Transactions of the American Mathematical Society, 377(03):1641–1670, 2024.
[7] Richard Durrett. Oriented percolation in two dimensions. Ann. Probab., 12(4):999–1040, 1984.
[8] G. Grimmett. Percolation. Springer, Berlin, 1999.
[9] Olle Häggström and Ronald Meester. Asymptotic shapes for stationary first passage percolation. Ann. Probab., 23(4):1511–1522, 1995.
[10] J. M. Hammersley. Percolation processes: Lower bounds for the critical probability. Ann. Math. Statist., 28:790–795, 1957.
[11] Antonin Jacquet. Geodesics cross any pattern in first-passage percolation without any moment assumption and with possibly infinite passage times. arXiv preprint arXiv:2310.04091, 2023.
[12] AntoninJacquet.Geodesicsinfirst-passagepercolationcrossanypattern.Electronic Journal of Probability, 28:1–64, 2023.
[13] Harry Kesten. Aspects of first passage percolation. In École d’été de probabilités de Saint Flour XIV-1984, pages 125–264. Springer, 1986.
[14] Harry Kesten. Surfaces with minimal random weights and maximal flows: a higher-dimensional version of first-passage percolation. Illinois J. Math., 31(1):99–166, 1987.
[15] Régine Marchand. Strict inequalities for the time constant in first passage percolation. The Annals of Applied Probability, 12(3):1001–1038, 2002.
[16] M. V. Menshikov. Coincidence of critical points in percolation problems. Dokl. Akad. Nauk SSSR, 288(6):1308–1311, 1986.
[17] Jean-ChristopheMourrat.Lyapunovexponents,shapetheoremsandlargedeviations for the random walk in random potential. ALEA Lat. Am. J. Probab. Math. Stat., 9:165–211, 2012.
[18] V.Strassen.Theexistenceofprobabilitymeasureswithgivenmarginals.Ann.Math. Statist., 36:423–439, 1965.
[19] J. van den Berg and H. Kesten. Inequalities with applications to percolation and reliability. J. Appl. Probab., 22(3):556–569, 1985.
[20] Jacob van den Berg and Harry Kesten. Inequalities for the time constant in first-passage percolation. The Annals of Applied Probability, pages 56–80, 1993.
[21] John C Wierman. Weak moment conditions for time coordinates in first-passage percolation models. Journal of Applied Probability, 17(4):968–978, 1980.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92802-
dc.description.abstract判斷一個有關初抵滲流模型的不等式中等號是否不會成立通常是一個具有挑戰性的問題。在這篇論文中,我們首先討論了由van den Berg和Kesten得出的嚴格不等式,該不等式涉及到兩個不同分佈對應的時間常數。然後,我們將證明對於一個具有特定條件的分佈,不同維度之間的時間常數存在嚴格不等式。zh_TW
dc.description.abstractDetermining whether an inequality in first-passage percolation can be strict is usually a challenging problem. In this thesis, we first discuss the strict inequality obtained by van den Berg and Kesten, which concerns the time constants corresponding to two different distributions. Then, we will prove that for a fixed distribution with a mild condition, there exists a strict inequality for the time constants between different dimensions.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-01T16:10:40Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-01T16:10:40Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
摘要 iii
Abstract v
Contents vii
Chapter 1 Introduction 1
1.1 Some Preliminaries........ 2
1.2 Strict Inequalities in First-Passage Percolation........ 5
1.3 A Strict Inequality for the Time Constants Corresponding to Different Distributions........ 8
1.4 A Strict Inequality for the Time Constants Between Different Dimensions........ 11
1.5 Outline of the Thesis........ 11
Chapter 2 Time Constants with Different Distributions 13
2.1 Some Preliminaries........ 14
2.2 Proof of Theorem 1.6........ 18
2.3 Proof of Lemma 2.6: A Resampling Argument........ 23
2.3.1 Exponential Decay of Probability That the Passage Time Gets Close to the Minimum Time........ 23
2.3.2 Proof of Lemma 2.6........ 28
Chapter 3 Time Constants in Different Dimensions 41
3.1 Patterns........ 42
3.2 Proof of Theorem 1.8........ 44
References 51
-
dc.language.isoen-
dc.subject初抵滲流模型zh_TW
dc.subject時間常數zh_TW
dc.subjectfirst-passage percolationen
dc.subjecttime constanten
dc.title探討初抵滲流模型中有關時間常數的嚴格不等式zh_TW
dc.titleOn Strict Inequalities for the Time Constants in First-Passage Percolationen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李志煌;陳隆奇zh_TW
dc.contributor.oralexamcommitteeJhih-Huang Li;Lung-Chi Chenen
dc.subject.keyword初抵滲流模型,時間常數,zh_TW
dc.subject.keywordfirst-passage percolation,time constant,en
dc.relation.page53-
dc.identifier.doi10.6342/NTU202401095-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-06-07-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf5.72 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved