Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92779
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周苡嘉zh_TW
dc.contributor.advisorYi-Chia Chouen
dc.contributor.author陳冠宏zh_TW
dc.contributor.authorKuan-Hung Chenen
dc.date.accessioned2024-06-24T16:08:15Z-
dc.date.available2024-06-25-
dc.date.copyright2024-06-24-
dc.date.issued2024-
dc.date.submitted2024-06-19-
dc.identifier.citation1. Lemme, M.C., et al., 2D materials for future heterogeneous electronics. Nature communications, 2022. 13(1): p. 1392.
2. Ramalingam, G., et al., Quantum confinement effect of 2D nanomaterials, in Quantum Dots-Fundamental and Applications. 2020, IntechOpen.
3. Novoselov, K.S., et al., Two-dimensional gas of massless Dirac fermions in graphene. nature, 2005. 438(7065): p. 197-200.
4. Shanmugam, V., et al., A review of the synthesis, properties, and applications of 2D materials. Particle & Particle Systems Characterization, 2022. 39(6): p. 2200031.
5. Hu, X., et al., 2D oxides for electronics and optoelectronics. Small Science, 2022. 2(8): p. 2200008.
6. Li, Y., et al., Cu-based high-entropy two-dimensional oxide as stable and active photothermal catalyst. Nature Communications, 2023. 14(1): p. 3171.
7. Mahmood, N., et al., Atomically thin two-dimensional metal oxide nanosheets and their heterostructures for energy storage. Energy Storage Materials, 2019. 16: p. 455-480.
8. Heard, C.J., et al., 2D oxide nanomaterials to address the energy transition and catalysis. Advanced Materials, 2019. 31(3): p. 1801712.
9. Velický, M. and P.S. Toth, From two-dimensional materials to their heterostructures: An electrochemist''s perspective. Applied Materials Today, 2017. 8: p. 68-103.
10. Chen, L.X., et al., Insights on the dual role of two-dimensional materials as catalysts and supports for energy and environmental catalysis. Journal of Materials Chemistry A, 2021. 9(4): p. 2018-2042.
11. Guan, M., et al., Two-dimensional transition metal oxide and hydroxide-based hierarchical architectures for advanced supercapacitor materials. Frontiers in Chemistry, 2020. 8: p. 390.
12. Mei, J., T. Liao, and Z. Sun, Two-dimensional metal oxide nanosheets for rechargeable batteries. Journal of energy chemistry, 2018. 27(1): p. 117-127.
13. Kuo, P.-Y., et al., Two-dimensional-like amorphous indium tungsten oxide nano-sheet junctionless transistors with low operation voltage. Scientific reports, 2019. 9(1): p. 7579.
14. Li, T., et al., A native oxide high-κ gate dielectric for two-dimensional electronics. Nature Electronics, 2020. 3(8): p. 473-478.
15. Han, W., Perspectives for spintronics in 2D materials. Apl Materials, 2016. 4(3): p. 032401.
16. Arash, A., et al., Large-area synthesis of 2D MoO3−x for enhanced optoelectronic applications. 2D Materials, 2019. 6(3): p. 035031.
17. Azam, A., et al., Two-dimensional WO3 nanosheets chemically converted from layered WS2 for high-performance electrochromic devices. Nano letters, 2018. 18(9): p. 5646-5651.
18. Datta, R.S., et al., Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique. Nature Electronics, 2020. 3(1): p. 51-58.
19. Cooke, J., et al., Synthesis and Characterization of Large‐Area Nanometer‐Thin β‐Ga2O3 Films from Oxide Printing of Liquid Metal Gallium. physica status solidi (a), 2020. 217(10): p. 1901007.
20. Lin, J., et al., Printing of quasi‐2D semiconducting β‐Ga2O3 in constructing electronic devices via room‐temperature liquid metal oxide skin. physica status solidi (RRL)–Rapid Research Letters, 2019. 13(9): p. 1900271.
21. Huang, C.-H., et al., Artificial synapse based on a 2D-SnO2 memtransistor with dynamically tunable analog switching for neuromorphic computing. ACS Applied Materials & Interfaces, 2021. 13(44): p. 52822-52832.
22. Alsaif, M.M., et al., 2D SnO/In2O3 van der Waals heterostructure photodetector based on printed oxide skin of liquid metals. Advanced Materials Interfaces, 2019. 6(7): p. 1900007.
23. Liao, B., et al., Synthesis and Selenization of Thickness-Controllable In2O3 Films by Printed Oxide Skin of Liquid Metals. ACS Applied Electronic Materials, 2023. 5(2): p. 1088-1096.
24. Hamlin, A.B., et al., 2D transistors rapidly printed from the crystalline oxide skin of molten indium. npj 2D Materials and Applications, 2022. 6(1): p. 1-8.
25. Messalea, K.A., et al., Bi2O3 monolayers from elemental liquid bismuth. Nanoscale, 2018. 10(33): p. 15615-15623.
26. Yuan, T., et al., Two-Dimensional Amorphous SnOx from Liquid Metal: Mass Production, Phase Transfer, and Electrocatalytic CO2 Reduction toward Formic Acid. Nano Letters, 2020. 20(4): p. 2916-2922.
27. Guo, X., et al., Gas sensors based on the oxide skin of liquid indium. Nanoscale, 2023. 15(10): p. 4972-4981.
28. Alsaif, M.M., et al., Atomically thin Ga2S3 from skin of liquid metals for electrical, optical, and sensing applications. ACS Applied Nano Materials, 2019. 2(7): p. 4665-4672.
29. Cabrera, N. and N.F. Mott, Theory of the oxidation of metals. Reports on progress in physics, 1949. 12(1): p. 163.
30. Goff, A., et al., An exploration into two-dimensional metal oxides, and other 2D materials, synthesised via liquid metal printing and transfer techniques. Dalton Transactions, 2021. 50(22): p. 7513-7526.
31. Zavabeti, A., et al., Two-dimensional materials in large-areas: synthesis, properties and applications. Nano-Micro Letters, 2020. 12(1): p. 1-34.
32. Wu, Y., et al., A novel strategy of fabricated flexible ITO electrode by liquid metal ultra-thin oxide film. Journal of Materiomics, 2022. 8(6): p. 1205-1212.
33. Nguyen, C.K., et al., 2‐nm‐Thick Indium Oxide Featuring High Mobility. Advanced Materials Interfaces, 2023. 10(9): p. 2202036.
34. Si, M., et al., Scaled indium oxide transistors fabricated using atomic layer deposition. Nature Electronics, 2022. 5(3): p. 164-170.
35. Si, M., et al., Why In2O3 can make 0.7 nm atomic layer thin transistors. Nano Letters, 2020. 21(1): p. 500-506.
36. Huang, C.-H., et al., Multiple-State Nonvolatile Memory Based on Ultrathin Indium Oxide Film via Liquid Metal Printing. ACS Applied Materials & Interfaces, 2023.
37. Bhalerao, S.R., D. Lupo, and P.R. Berger, Flexible, solution-processed, indium oxide (In2O3) thin film transistors (TFT) and circuits for internet-of-things (IoT). Materials Science in Semiconductor Processing, 2022. 139: p. 106354.
38. Marezio, M., Refinement of the crystal structure of In2O3 at two wavelengths. Acta Crystallographica, 1966. 20(6): p. 723-728.
39. Zahoor, F., et al., Resistive random access memory: introduction to device mechanism, materials and application to neuromorphic computing. Discover nano, 2023. 18(1): p. 36.
40. Zhu, Y., et al., Anionic defect engineering of transition metal oxides for oxygen reduction and evolution reactions. Journal of Materials Chemistry A, 2019. 7(11): p. 5875-5897.
41. Rhodes, D., et al., Disorder in van der Waals heterostructures of 2D materials. Nature materials, 2019. 18(6): p. 541-549.
42. Qiu, H., et al., Hopping transport through defect-induced localized states in molybdenum disulphide. Nature communications, 2013. 4(1): p. 2642.
43. Soni, A., et al., Ultrafast Exciton Trapping and Exciton–Exciton Annihilation in Large-Area CVD-Grown Monolayer WS2. The Journal of Physical Chemistry C, 2021. 125(43): p. 23880-23888.
44. Nan, H., et al., Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS nano, 2014. 8(6): p. 5738-5745.
45. Waser, R. and M. Aono, Nanoionics-based resistive switching memories. Nature materials, 2007. 6(11): p. 833-840.
46. Huang, C.-H., et al., Multiple-State Nonvolatile Memory Based on Ultrathin Indium Oxide Film via Liquid Metal Printing. ACS Applied Materials & Interfaces, 2023. 25838-25848: p. 15 (21).
47. Walker, P. and W.H. Tarn, CRC handbook of metal etchants. 1990: CRC press.
48. Chen, K.-H., et al., Control of Oxygen Vacancies of 2D-InOx Fabricated by Liquid Metal Printing via Temperature Modulation. The Journal of Physical Chemistry C, 2024. 128(12): p. 5355-5365.
49. Peng, J., et al., Water-solid interfaces probed by high-resolution atomic force microscopy. Surface Science Reports, 2022. 77(1): p. 100549.
50. Lichtman, J.W. and J.-A. Conchello, Fluorescence microscopy. Nature methods, 2005. 2(12): p. 910-919.
51. Vandenbroucke, A., Abatement of volatile organic compounds by combined use of non-thermal plasma and heterogeneous catalysis. 2015, Ghent University.
52. Brown, P.D., Transmission electron microscopy-A textbook for materials science, by David B. Williams and C. Barry Carter. Microscopy and Microanalysis, 1999. 5(6): p. 452-453.
53. Kwon, C., et al., A microstructural study of indium‐indium oxide composite films. Journal of applied physics, 1991. 69(9): p. 6716-6718.
54. Chen, Y., et al., Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization. Journal of Applied Physics, 1998. 84(7): p. 3912-3918.
55. Cao, H., et al., Room-temperature ultraviolet-emitting In2O3 nanowires. Applied physics letters, 2003. 83(4): p. 761-763.
56. Bierwagen, O., Indium oxide—a transparent, wide-band gap semiconductor for (opto) electronic applications. Semiconductor Science and Technology, 2015. 30(2): p. 024001.
57. Tang, L.-M., et al., Donor-donor binding in In2O3: Engineering shallow donor levels. Journal of Applied Physics, 2010. 107(8): p. 083704.
58. Choudhury, B., M. Dey, and A. Choudhury, Shallow and deep trap emission and luminescence quenching of TiO2 nanoparticles on Cu doping. Applied Nanoscience, 2014. 4: p. 499-506.
59. Reunchan, P., et al., Vacancy defects in indium oxide: An ab-initio study. Current Applied Physics, 2011. 11(3): p. S296-S300.
60. Lei, F., et al., Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. Journal of the American Chemical Society, 2014. 136(19): p. 6826-6829.
61. Huang, G., et al., Strong blue emission from anodic alumina membranes with ordered nanopore array. Journal of applied physics, 2003. 93(1): p. 582-585.
62. Mukherjee, S., et al., Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In2O3 nanowires. Nanotechnology, 2018. 29(17): p. 175201.
63. Gan, J., et al., Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Scientific reports, 2013. 3(1): p. 1021.
64. Arooj, S., et al., Green emission of indium oxide via hydrogen treatment. RSC advances, 2018. 8(21): p. 11828-11833.
65. Ovchinnikov, V., Theory of The Oxidation of Metals and Semiconductors: The Phenomenon of Isoparametric Generation of Nonstoichiometric Point Defects in Anodic Oxide Films. ECS Journal of Solid State Science and Technology, 2019. 8(11): p. N196.
66. Li, B., et al., In2O3 hollow microspheres: synthesis from designed In(OH)3 precursors and applications in gas sensors and photocatalysis. Langmuir, 2006. 22(22): p. 9380-9385.
67. Fan, J.C. and J.B. Goodenough, X‐ray photoemission spectroscopy studies of Sn‐doped indium‐oxide films. Journal of Applied Physics, 1977. 48(8): p. 3524-3531.
68. Hoch, L.B., et al., The Rational Design of a Single‐Component Photocatalyst for Gas‐Phase CO2 Reduction Using Both UV and Visible Light. Advanced Science, 2014. 1(1): p. 1400013.
69. Grimmer, H., W. Bollmann, and D. Warrington, Coincidence-site lattices and complete pattern-shift in cubic crystals. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 1974. 30(2): p. 197-207.
70. Brandon, D., The structure of high-angle grain boundaries. Acta metallurgica, 1966. 14(11): p. 1479-1484.
71. Wang, Y., et al., Determination of near coincident site lattice orientations in MgO/Cu composite. Journal of materials science, 2002. 37: p. 2511-2518.
72. Imaeda, M., et al., Atomic structure, electronic structure, and defect energetics in [001](310) Σ 5 grain boundaries of SrTiO 3 and BaTiO3. Physical Review B, 2008. 78(24): p. 245320.
73. McLeod, J.A., et al., Chemical Bonding and Hybridization in 5p Binary Oxide. The Journal of Physical Chemistry C, 2012. 116(45): p. 24248-24254.
74. McGuinness, C., et al., Influence of shallow core-level hybridization on the electronic structure of post-transition-metal oxides studied using soft X-ray emission and absorption. Physical Review B, 2003. 68(16): p. 165104.
75. King, P., et al., Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedral In2O3. Physical Review B, 2009. 79(20): p. 205211.
76. Piper, L., et al., Electronic structure of In2O3 from resonant x-ray emission spectroscopy. Applied Physics Letters, 2009. 94(2): p. 022105.
77. De Boer, T., et al., Band gap and electronic structure of cubic, rhombohedral, and orthorhombic In2O3 polymorphs: Experiment and theory. Physical Review B, 2016. 93(15): p. 155205.
78. Frati, F., M.O. Hunault, and F.M. De Groot, Oxygen K-edge X-ray absorption spectra. Chemical reviews, 2020. 120(9): p. 4056-4110.
79. Hojo, H., et al., Atomic structure of a CeO2 grain boundary: the role of oxygen vacancies. Nano letters, 2010. 10(11): p. 4668-4672.
80. Gao, P., et al., Atomic-scale measurement of flexoelectric polarization at SrTiO 3 dislocations. Physical review letters, 2018. 120(26): p. 267601.
81. Yang, C., et al., Determination of Grain-Boundary Structure and Electrostatic Characteristics in a SrTiO3 Bicrystal by Four-Dimensional Electron Microscopy. Nano Letters, 2021. 21(21): p. 9138-9145.
82. Lei, Y., et al., Segregation effects at grain boundaries in fluorite‐structured ceramics. Journal of the American Ceramic Society, 2002. 85(9): p. 2359-2363.
83. Torruella, P., et al., Assessing oxygen vacancies in bismuth oxide through EELS measurements and DFT simulations. The Journal of Physical Chemistry C, 2017. 121(44): p. 24809-24815.
84. Wang, Z., et al., Formation, detection, and function of oxygen vacancy in metal oxides for solar energy conversion. Advanced Functional Materials, 2022. 32(7): p. 2109503.
85. Kröger, F. and H. Vink, Relations between the concentrations of imperfections in crystalline solids, in Solid state physics. 1956, Elsevier. p. 307-435.
86. Hou, Q., et al., Defect formation in In2O3 and SnO2: A new atomistic approach based on accurate lattice energies. Journal of Materials Chemistry C, 2018. 6(45): p. 12386-12395.
87. Sánchez‐Santolino, G., et al., Localization of yttrium segregation within YSZ grain boundary dislocation cores. physica status solidi (a), 2018. 215(19): p. 1800349.
88. Klie, R. and N. Browning, Atomic scale characterization of oxygen vacancy segregation at SrTiO3 grain boundaries. MRS Online Proceedings Library, 2000. 654: p. 171-176.
89. Yuan, J., et al., Electron energy loss spectroscopy study of cerium stabilised zirconia: an application of valence determination in rare earth systems. Micron, 1999. 30(2): p. 141-145.
90. Fuchs, F. and F. Bechstedt, Indium-oxide polymorphs from first principles: Quasiparticle electronic states. Physical Review B, 2008. 77(15): p. 155107.
91. Hill, D., et al., The relationship between local order, long range order, and sub-band-gap defects in hafnium oxide and hafnium silicate films. Journal of applied physics, 2008. 103(9): p. 093712.
92. Hosamani, G., et al., Structural, Optical and Magnetic Properties of Dy-doped In2O3 Nanoparticles. Journal of Electronic Materials, 2021. 50: p. 52-58.
93. Garvie, L. and P. Buseck, Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy. Journal of Physics and Chemistry of solids, 1999. 60(12): p. 1943-1947.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92779-
dc.description.abstract在我們的研究中,我們提出了一個新概念,即在液態金屬中形成氧化層的過程中,氧空缺濃度會隨溫度變化而有異。具體來說,通過改變二維氧化物之壓印溫度,我們成功地調節了氧空缺的濃度。而透過採取一系列材料分析技術,我們提出了一種快速且高效的方法來製備二維氧化銦,同時能夠在宏觀以及微觀層面量測其內部缺陷之含量。在宏觀尺度下,我們透過光致發光能譜(PL)以及X射線光電子能譜(XPS)等分析技術,量測二維氧化銦在不同溫度下之氧空缺濃度變化,我們發現在較高的壓印溫度下氧空缺含量會顯著減少。此外,在微觀尺度下,我們透過在晶界附近採用電子能量損失能譜(EELS)之掃描,進而有效探測晶粒邊界和晶粒內部之間之氧空缺濃度之波動。我們的研究結果顯示,氧空缺在這些晶界處顯著積累。而透過溫度調節來操縱缺陷濃度的能力也為二維憶阻器材料及其在基於二維氧化銦的記憶體元件之開發提供了不同層面的見解及研究價值。zh_TW
dc.description.abstractIn our study, we introduced a novel concept wherein the concentration of oxygen vacancies undergoes temperature-dependent variations during the formation of an oxide layer in liquid metal. Specifically, by adjusting the imprinting temperature of two-dimensional oxides, we successfully controlled the concentration of oxygen vacancies. Employing a suite of material analysis techniques, we devised a rapid and effective method for fabricating 2D-InOx while concurrently quantifying its internal defect content at both macro and micro scales. On the macroscopic level, we utilized photoluminescence spectroscopy (PL) and X-ray photoelectron spectroscopy (XPS) to assess the variation in oxygen vacancies within 2D-InOx at different temperatures, noting a significant reduction in oxygen vacancies at elevated imprinting temperatures. Moreover, at the microscopic level, electron energy loss spectroscopy (EELS) near grain boundaries allowed for precise detection of oxygen vacancy concentration fluctuations between grain boundaries and the interior of grains, revealing a notable accumulation of oxygen vacancies at these interfaces. This ability to modulate defect concentrations via temperature manipulation offers valuable insights and research prospects for advancing 2D memory materials and their application in 2D-InOx-based memory devices.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-24T16:08:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-06-24T16:08:15Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsMASTER’S THESIS ACCEPTANCE CERTIFICATE i
ACKNOLEDGEMENTS ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
CHAPTER 1 INTRODUCTION 1
1.1 Two-dimensional materials 1
1.3 Indium Oxide 4
1.4 Memiristor 5
1.5 Defect engineering 6
CHAPTER 2 EXPERIMENTAL SETUPS 10
2.1 Fabrication of 2D-InOx 10
2.2 Atomic Force Microscopy 11
2.3 Photoluminescence 12
2.4 X-ray photoelectron spectroscopy 14
2.5 Transmission Electron Microscopy 15
2.6 Electron Energy Loss Spectroscopy 16
2.7 Material Characterizations 18
CHAPTER 3 RESULTS AND DISCUSSION 19
3.1 Characterization of 2D-InOx 19
3.2 Defect Characteristics of 2D-InOx 24
CHAPTER 4 CONCLUSION 39
CHAPTER 5 REFERENCES 40
-
dc.language.isoen-
dc.subject液態金屬壓印zh_TW
dc.subject二維材料zh_TW
dc.subject氧化銦zh_TW
dc.subject氧空缺zh_TW
dc.subject掃描式穿透式電子顯微鏡zh_TW
dc.subject電子能量損失能譜zh_TW
dc.subjecttwo-dimensional materialen
dc.subjectliquid metal printingen
dc.subjectelectron energy loss spectroscopyen
dc.subjectscanning transmission electron microscopyen
dc.subjectoxygen vacanciesen
dc.subjectindium oxideen
dc.title透過液態金屬轉印技術製備二維氧化銦之物理性質研究zh_TW
dc.titleInvestigation of Physical Properties for Two-Dimensional Indium Oxide Fabricated via Liquid Metal Printing Techniqueen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蕭惠心;薛承輝;游文岳zh_TW
dc.contributor.oralexamcommitteeHui-Hsin Hsiao;Chun-Hway Hsueh;Wen-Yueh Yuen
dc.subject.keyword液態金屬壓印,二維材料,氧化銦,氧空缺,掃描式穿透式電子顯微鏡,電子能量損失能譜,zh_TW
dc.subject.keywordliquid metal printing,two-dimensional material,indium oxide,oxygen vacancies,scanning transmission electron microscopy,electron energy loss spectroscopy,en
dc.relation.page49-
dc.identifier.doi10.6342/NTU202401177-
dc.rights.note未授權-
dc.date.accepted2024-06-20-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
3.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved