Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92777
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳信志zh_TW
dc.contributor.advisorShinn-Chih Wuen
dc.contributor.author羅浚嘉zh_TW
dc.contributor.authorChun-Chia Loen
dc.date.accessioned2024-06-24T16:07:32Z-
dc.date.available2024-06-25-
dc.date.copyright2024-06-24-
dc.date.issued2024-
dc.date.submitted2024-06-18-
dc.identifier.citationAn, Q., Zhou, H., Hu, J., Luo, Y. & Hickford, J. G. 2018. Sequence and haplotypes variation of the ovine uncoupling protein-1 gene (UCP1) and their association with growth and carcass traits in New Zealand Romney lambs. Genes, 9, 189. doi: 10.3390/genes9040189
Antonacci, M. A., McHugh, C., Kelley, M., McCallister, A., Degan, S. & Branca, R. T. 2019. Direct detection of brown adipose tissue thermogenesis in UCP1−/− mice by hyperpolarized 129Xe MR thermometry. Scientific Reports, 9, 14865. doi: 10.1038/s41598-019-51483-4
Aquila, H., Link, T. A. & Klingenberg, M. 1985. The uncoupling protein from brown fat mitochondria is related to the mitochondrial ADP/ATP carrier. Analysis of sequence homologies and of folding of the protein in the membrane. The EMBO Journal, 4, 2369-2376. doi: 10.1002/j.1460-2075.1985.tb03941.x
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A. & Horvath, P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315, 1709-1712. doi: 10.1126/science.1138140
Bateman, N. 1957. Some physiological aspects of lactation in mice. The Journal of Agricultural Science, 49, 60-77. doi:10.1017/S0021859600034328
Berg, F., Gustafson, U. & Andersson, L. 2006. The uncoupling protein 1 gene (UCP1) is disrupted in the pig lineage: a genetic explanation for poor thermoregulation in piglets. PLoS Genetics, 2, e129. doi: 10.1371/journal.pgen.0020129
Berthon, D., Herpin, P. & Le Dividich, J. 1994. Shivering thermogenesis in the neonatal pig. Journal of Thermal Biology, 19, 413-418. doi: 10.1016/0306-4565(94)90040-X
Bibikova, M., Carroll, D., Segal, D. J., Trautman, J. K., Smith, J., Kim, Y.-G. & Chandrasegaran, S. 2001. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Molecular and Cellular Biology, 21, 289-297. doi: 10.1128/MCB.21.1.289-297.2001
Brondani, L. d. A., Assmann, T. S., Duarte, G. C. K., Gross, J. L., Canani, L. H. & Crispim, D. 2012. The role of the uncoupling protein 1 (UCP1) on the development of obesity and type 2 diabetes mellitus. Arquivos Brasileiros de Endocrinologia & Metabologia, 56, 215-225. doi: 10.1590/S0004-27302012000400001
Cannon, B. & Nedergaard, J. 2004. Brown adipose tissue: function and physiological significance. Physiological Reviews 84,277-359. doi: 10.1152/physrev.00015.2003
Capecchi, M. R. 2005. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nature Reviews Genetics, 6, 507-512. doi: 10.1038/nrg1619
Carroll, D. 2011. Genome engineering with zinc-finger nucleases. Genetics, 188, 773-782. doi: 10.1534/genetics.111.131433
Casteilla, L., Champigny, O., Bouillaud, F., Robelin, J. & Ricquier, D. 1989. Sequential changes in the expression of mitochondrial protein mRNA during the development of brown adipose tissue in bovine and ovine species. Sudden occurrence of uncoupling protein mRNA during embryogenesis and its disappearance after birth. Biochemical Journal, 257, 665-671. doi: 10.1042/bj2570665
Chen, H., Choi, J. & Bailey, S. 2014. Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease. Journal of Biological Chemistry, 289, 13284-13294. doi: 10.1074/jbc.M113.539726
Christian, M., Cermak, T., Doyle, E. L., Schmidt, C., Zhang, F., Hummel, A., Bogdanove, A. J. & Voytas, D. F. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 186, 757-761. doi: 10.1534/genetics.110.120717
Deng, D., Yan, C., Pan, X., Mahfouz, M., Wang, J., Zhu, J.-K., Shi, Y. & Yan, N. 2012. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science, 335, 720-723. doi: 10.1126/science.1215670
Elwood, R. W. 1991. Ethical implications of studies on infanticide and maternal aggression in rodents. Animal Behaviour, 42, 841-849. doi: 10.1016/S0003-3472(05)80128-9
Enerbäck, S., Jacobsson, A., Simpson, E. M., Guerra, C., Yamashita, H., Harper, M.-E. & Kozak, L. P. 1997. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature, 387, 90-94. doi: 10.1038/387090a0
Fedorenko, A., Lishko, P. V. & Kirichok, Y. 2012. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell, 151, 400-413. doi: 10.1016/j.cell.2012.09.010
Gandelman, R. & Simon, N. G. 1978. Spontaneous pup‐killing by mice in response to large litters. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, 11, 235-241. doi: 10.1002/dev.420110307
Garneau, J. E., Dupuis, M.-È., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadán, A. H. & Moineau, S. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468, 67-71. doi: 10.1038/nature09523
Hansen, P. J. 2009. Effects of heat stress on mammalian reproduction. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 3341-3350. doi: 10.1098/rstb.2009.0131
Heler, R., Marraffini, L. A. & Bikard, D. 2014. Adapting to new threats: the generation of memory by CRISPR‐Cas immune systems. Molecular Microbiology, 93, 1-9. doi: 10.1111/mmi.12640
Herpin, P., Damon, M. & Le Dividich, J. 2002. Development of thermoregulation and neonatal survival in pigs. Livestock Production Science, 78, 25-45. doi: 10.1016/S0301-6226(02)00183-5
Himms‐Hagen, J. 1990. Brown adipose tissue thermogenesis: interdisciplinary studies. The FASEB Journal, 4, 2890-2898. doi: 10.1096/fasebj.4.11.2199286
Hou, L., Hu, C. Y. & Wang, C. 2017. Pig has no brown adipose tissue. The FASEB Journal, 31, lb695-lb695. doi: 10.1096/fasebj.31.1_supplement.lb695
Ikeda, K., Maretich, P. & Kajimura, S. 2018. The common and distinct features of brown and beige adipocytes. Trends in Endocrinology & Metabolism, 29, 191-200. doi: 10.1016/j.tem.2018.01.001
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A. & Charpentier, E. 2012. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816-821. doi: 10.1126/science.1225829
Jinek, M., Jiang, F., Taylor, D. W., Sternberg, S. H., Kaya, E., Ma, E., Anders, C., Hauer, M., Zhou, K. & Lin, S. 2014. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 343, 1247997. doi: 10.1126/science.1247997
Johnson, M. & Speakman, J. 2001. Limits to sustained energy intake: V. Effect of cold-exposure during lactation in Mus musculus. Journal of Experimental Biology, 204, 1967-1977. doi: 10.1242/jeb.204.11.1967
Johnson, M., Thomson, S. & Speakman, J. R. 2001. Limits to sustained energy intake: I. Lactation in the laboratory mouse Mus musculus. Journal of Experimental Biology, 204, 1925-1935. doi: 10.1242/jeb.204.11.1925
König, B. 1989. Kin recognition and maternal care under restricted feeding in house mice (Mus domesticus). Ethology, 82, 328-343. doi: 10.1111/j.1439-0310.1989.tb00513.x
König, B. & Markl, H. 1987. Maternal care in house mice: I. The weaning strategy as a means for parental manipulation of offspring quality. Behavioral Ecology and Sociobiology, 20, 1-9. doi: 10.1007/BF00292161
Kim, Y.-G., Cha, J. & Chandrasegaran, S. 1996. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences, 93, 1156-1160. doi: 10.1073/pnas.93.3.1156
Król, E. & Speakman, J. R. 2003a. Limits to sustained energy intake VI. Energetics of lactation in laboratory mice at thermoneutrality. Journal of Experimental Biology, 206, 4255-4266. doi: 10.1242/jeb.00674
Król, E. & Speakman, J. R. 2003b. Limits to sustained energy intake VII. Milk energy output in laboratory mice at thermoneutrality. Journal of Experimental Biology, 206, 4267-4281. doi: 10.1242/jeb.00675
Król, E., Murphy, M. & Speakman, J. R. 2007. Limits to sustained energy intake. X. Effects of fur removal on reproductive performance in laboratory mice. Journal of Experimental Biology, 210, 4233-4243. doi: 10.1242/jeb.009779
Król, E., Martin, S. A., Huhtaniemi, I. T., Douglas, A. & Speakman, J. R. 2011. Negative correlation between milk production and brown adipose tissue gene expression in lactating mice. Journal of Experimental Biology, 214, 4160-4170. doi: 10.1242/jeb.061382
Lau, C. 2001. Effects of stress on lactation. Pediatric Clinics of North America, 48, 221-234. doi: 10.1016/S0031-3955(05)70296-0
Leidinger, C. S., Thöne-Reineke, C., Baumgart, N. & Baumgart, J. 2019. Environmental enrichment prevents pup mortality in laboratory mice. Laboratory Animals, 53, 53-62. doi: 10.1177/0023677218777536
Lim, S., Honek, J., Xue, Y., Seki, T., Cao, Z., Andersson, P., Yang, X., Hosaka, K. & Cao, Y. 2012. Cold-induced activation of brown adipose tissue and adipose angiogenesis in mice. Nature Protocols, 7, 606-615. doi:10.1038/nprot.2012.013
Liu, D., Ren, T. & Gao, X. 2003a. Cationic transfection lipids. Current Medicinal Chemistry, 10, 1307-1315. doi: 10.2174/0929867033457386
Liu, X., Rossmeisl, M., McClaine, J. & Kozak, L. P. 2003b. Paradoxical resistance to diet-induced obesity in UCP1-deficient mice. The Journal of Clinical Investigation, 111, 399-407. doi: 10.1172/JCI15737
Lowell, B. B. & Spiegelman, B. M. 2000. Towards a molecular understanding of adaptive thermogenesis. Nature, 404, 652-660. doi: 10.1038/35007527
Luijten, I. H., Feldmann, H. M., von Essen, G., Cannon, B. & Nedergaard, J. 2019. In the absence of UCP1-mediated diet-induced thermogenesis, obesity is augmented even in the obesity-resistant 129S mouse strain. American Journal of Physiology-Endocrinology and Metabolism, 316, E729-E740. doi: 10.1152/ajpendo.00020.2019
Mellor, D. & Stafford, K. 2004. Animal welfare implications of neonatal mortality and morbidity in farm animals. The Veterinary Journal, 168, 118-133. doi: /10.1016/j.tvjl.2003.08.004
Moscou, M. J. & Bogdanove, A. J. 2009. A simple cipher governs DNA recognition by TAL effectors. Science, 326, 1501-1501. doi: 10.1126/science.1178817
Nagai, J. 1971. Preweaning weight as a measure of milk production in mice. Canadian Journal of Genetics and Cytology, 13, 354-361. doi: 10.1139/g71-05
Nicholls, D. G. & Locke, R. M. 1984. Thermogenic mechanisms in brown fat. Physiological Reviews, 64, 1-64. doi: 10.1152/physrev.1984.64.1.1
Oelkrug, R., Polymeropoulos, E. & Jastroch, M. 2015. Brown adipose tissue: physiological function and evolutionary significance. Journal of Comparative Physiology B, 185, 587-606. doi: 10.1007/s00360-015-0907-7
Okamoto, S. & Oka, T. 1984. Evidence for physiological function of epidermal growth factor: pregestational sialoadenectomy of mice decreases milk production and increases offspring mortality during lactation period. Proceedings of the National Academy of Sciences, USA, 81, 6059-6063. doi: 10.1073/pnas.81.19.6059
Rudolph, M. C., Neville, M. C. & Anderson, S. M. 2007. Lipid synthesis in lactation: diet and the fatty acid switch. Journal of Mammary Gland Biology and Neoplasia, 12, 269-281. doi: 10.1007/s10911-007-9061-5
San Filippo, J., Sung, P. & Klein, H. 2008. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem., 77, 229-257. doi: 10.1146/annurev.biochem.77.061306.125255
Smith, J., Bibikova, M., Whitby, F. G., Reddy, A., Chandrasegaran, S. & Carroll, D. 2000. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Research, 28, 3361-3369. doi: 10.1093/nar/28.17.3361
Speakman, J. R. 2008. The physiological costs of reproduction in small mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 375-398. doi: 10.1098/rstb.2007.2145
Speakman, J. R. & Król, E. 2005. Limits to sustained energy intake IX: a review of hypotheses. Journal of Comparative Physiology B, 175, 375-394. doi: 10.1007/s00360-005-0013-3
Speakman, J. R. & Król, E. 2010. Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms. Journal of Animal Ecology, 79, 726-746. doi: 10.1111/j.1365-2656.2010.01689.x
Stier, A., Bize, P., Habold, C., Bouillaud, F., Massemin, S. & Criscuolo, F. 2014. Mitochondrial uncoupling prevents cold-induced oxidative stress: a case study using UCP1 knockout mice. Journal of Experimental Biology, 217, 624-630. doi: 10.1242/jeb.092700
Trayhurn, P., Temple, N. J. & Aerde, J. V. 1989. Evidence from immunoblotting studies on uncoupling protein that brown adipose tissue is not present in the domestic pig. Canadian Journal of Physiology and Pharmacology, 67, 1480-1485. doi: 10.1139/y89-239
Wu, J., Boström, P., Sparks, L. M., Ye, L., Choi, J. H., Giang, A.-H., Khandekar, M., Virtanen, K. A., Nuutila, P. & Schaart, G. 2012. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell, 150, 366-376. doi: 10.1016/j.cell.2012.05.016
Xiao, Y., Kronenfeld, J. M. & Renquist, B. J. 2020. Feed intake–dependent and–independent effects of heat stress on lactation and mammary gland development. Journal of Dairy Science, 103, 12003-12014. doi: 10.3168/jds.2020-18675
Xu, W., Barrientos, T. & Andrews, N. C. 2013. Iron and copper in mitochondrial diseases. Cell Metabolism, 17, 319-328. doi.: 10.1016/j.cmet.2013.02.004
Yoshimatsu, H., Oomura, Y., Katafuchi, T., Niijima, A. & Sato, A. 1985. Lesions of the ventromedial hypothalamic nucleus enhance sympatho-adrenal function. Brain Research, 339, 390-392. doi: 10.1016/0006-8993(85)90112-X
Youds, J. L. & Boulton, S. J. 2011. The choice in meiosis–defining the factors that influence crossover or non-crossover formation. Journal of Cell Science, 124, 501-513. doi: 10.1242/jcs.074427
Zhang, Y., Long, C., Bassel-Duby, R. & Olson, E. N. 2018. Myoediting: toward prevention of muscular dystrophy by therapeutic genome editing. Physiological Reviews, 98, 1205-1240. doi: 10.1152/physrev.00046.2017
Zhao, R. Z., Jiang, S., Zhang, L. & Yu, Z. B. 2019. Mitochondrial electron transport chain, ROS generation and uncoupling. International Journal of Molecular Medicine, 44, 3-15. doi: 10.3892/ijmm.2019.4188
Zhao, Z.-J., Hambly, C., Shi, L.-L., Bi, Z.-Q., Cao, J. & Speakman, J. R. 2020. Late lactation in small mammals is a critically sensitive window of vulnerability to elevated ambient temperature. Proceedings of the National Academy of Sciences, USA, 117, 24352-24358. doi: 10.1073/pnas.200897411
Zheng, Q., Lin, J., Huang, J., Zhang, H., Zhang, R., Zhang, X., Cao, C., Hambly, C., Qin, G. & Yao, J. 2017. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proceedings of the National Academy of Sciences, USA, 114, E9474-E9482. doi: 10.1073/pnas.170785311
Zhou, H., Cheng, L., Byun, S. O., Aizimu, W., Hodge, M. C., Edwards, G. R. & Hickford, J. G. 2017. Haplotypic variation in the UCP1 gene is associated with milk traits in dairy cows. Journal of Dairy Research, 84, 68-75. doi: 10.1017/S0022029916000522
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92777-
dc.description.abstract小鼠為最常使用的模式生物之一,幼鼠的死亡會造成實驗室資源的損耗以及實驗進度的干擾。小鼠在斷奶之前的死亡率與母鼠哺乳期間的產乳量有顯著相關性,並根據散熱極限 (heat dissipation limit) 理論,體熱嚴重地影響了小鼠哺乳期的產乳表現,較高的環境溫度及體溫皆會使小鼠的產乳量下降,而溫度的降低及散熱能力的增加能增進小鼠產乳的能力,因此推測減少小鼠的產熱可能有助於提升小鼠哺乳期的產乳表現,以增加幼鼠的成長及存活率。
棕色脂肪組織為產熱功能最活躍的組織,其產熱透過解偶聯蛋白質1 (uncoupling protein 1, Ucp1) 來調節,亦有研究觀察到在哺乳期間UCP1的基因表現量有下降的情形。因此本試驗擬使用CRISPR-Cas9基因編輯系統,將小鼠UCP1基因之外顯子2及部分外顯子3之間序列做剔除,以使棕色脂肪組織之產熱功能失活,期望能使小鼠之產乳表現上升。本試驗首先以細胞試驗測試候選sgRNA之基因編輯可行性,再使用顯微注射技術將選用之sgRNA與Cas9蛋白質注射入小鼠一細胞期胚胎之原核內,以達到基因編輯的效果,透過胚胎移置方式使代孕母鼠產下目標基因編輯小鼠,以定序方式分析其序列與基因型,並使用西方墨點法對小鼠棕色脂肪組織做 Ucp1 蛋白質定量分析,隨後比較UCP1基因剔除小鼠之產乳量與野生型小鼠在哺乳期間的產乳量差異。
本試驗成功產製出 UCP1 雙等位基因剔除(UCP1-/-)小鼠,並且在其棕色脂肪組織上無測得Ucp1蛋白質的含量,顯示此基因剔除小鼠之棕色脂肪組織已喪失產熱功能,但在產乳量的測量上尚未觀察到與野生型小鼠有顯著的差異,推測可能與試驗小鼠之品系及攝食量差異相關。因此後續可對不同品系之小鼠進行相同之試驗測試,或增加限制攝食量之試驗變因,期望能觀察到產乳表現優於野生型小鼠之結果,使其有利於小鼠的繁殖及育種,並可將其基因功能特性供其他物種做為參考。
zh_TW
dc.description.abstractMice are one of the most commonly used model organism, and the mortality of pups can lead to resource loss and disruptions in experimental progress in the laboratory. The mortality rate before weaning in mice is significantly correlated with the lactation performance of the mother mouse. According to the heat dissipation limit theory, body heat significantly influences lactation performance during the mouse lactation. Higher environmental temperatures and body temperatures both can reduces milk production in mice, while lowering the temperature and increasing heat dissipation capacity enhance lactation ability. Therefore, reducing the thermogenic capacity of mice may contribute to enhancing lactation performance during the mouse lactation, thereby increasing the growth and survival rates of the offspring.
Brown adipose tissue is the most active tissue in thermogenesis, and its heat production is regulated by uncoupling protein 1 (Ucp1). Some studies have also observed a decrease in UCP1 gene expression during lactation. Therefore, this study plans to use the CRISPR-Cas9 gene editing system to delete the sequence between exon 2 and part of exon 3 of the mouse UCP1 gene, and it will result in the inactivation of the thermogenic function of brown adipose tissue and expect an increase in lactation performance in mice. The experiment starts with a cell test to select the available sgRNA sequences. Subsequently, the selected sgRNA and Cas9 protein are injected into the pronucleus of one-cell stage mouse embryos using microinjection technology to achieve gene editing. Target gene-edited mice are obtained through embryo transfer by surrogate mothers, and their sequences and genotypes are analyzed through sequencing. Then use the Western blotting to quantify Ucp1 protein in mouse brown adipose tissue and then compared the difference in milk production between UCP1 knockout mice and wild-type mice during lactation.
In this experiment, UCP1 knockout (UCP1-/-) mice had been generated, and no Ucp1 protein was detected in the brown adipose tissue, indicating that the brown adipose tissue of UCP1 knockout mice has lost its thermogenic function. but no significant differences in milk production were observed compared to wild-type mice. It is speculated that it is related to differences for trials in mouse strains and food intake. Therefore, the same experimental test can be carried out on different strains of mice in the future, or the experimental variables of limiting food intake can be added. It is expected that the milk production performance of wild-type mice may be observed to be better than that of wild-type mice, which will be beneficial to the reproduction and breeding of mice. Additionally, the genetic characteristics of these mice could serve as a reference for other species.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-24T16:07:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-06-24T16:07:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
致謝 I
中文摘要 II
Abstract III
目次 V
圖次 VIII
表次 IX
緒論 1
1. 文獻探討 2
1.1 幼鼠離乳前的發育及死亡 2
1.1.1 幼鼠死亡的因素 2
1.1.2 窩仔數對於幼鼠死亡及發育的影響 2
1.1.3 母鼠泌乳量對於幼鼠死亡及發育的影響 3
1.2 母小鼠的產乳量 3
1.2.1 影響小鼠產乳量的因素 3
1.2.2 小鼠產乳量的增加 4
1.3 解偶聯蛋白質1 (uncoupling protein 1, Ucp1) 4
1.3.1 哺乳動物之產熱組織──棕色脂肪組織 4
1.3.2 解偶聯蛋白質1 (Ucp1) 簡介 6
1.3.3 解偶聯蛋白質1 (Ucp1)的活化與產熱 8
1.3.4 UCP1在豬隻上的研究 9
1.3.5 UCP1在牛與羊的研究 10
1.3.6 UCP1在小鼠上的研究 10
1.4基因編輯技術介紹 12
1.4.1 基因編輯簡介 12
1.4.2 常用基因編輯系統介紹 12
1.4.3 CRISPR-Cas9 系統介紹 15
2. 研究動機與策略 17
3. 材料方法 18
3.1體外試驗 18
3.1.1 CRISPR-Cas9 表現質體構築 18
3.1.2 細胞培養與保存方式 22
3.1.3 細胞轉染試驗 22
3.1.4 sgRNA 可行性分析 23
3.2 基因編輯小鼠產製 26
3.2.1 sgRNA 製備 26
3.2.2 Cas9 蛋白酶 26
3.2.3 試驗動物 26
3.2.4 母鼠超數排卵 26
3.2.5 小鼠胚之沖取、培養及操作 27
3.3 基因編輯小鼠之基因型及性狀分析 29
3.3.1 小鼠基因型鑑定 29
3.3.2 仔鼠出生率及基因編輯效率分析 30
3.3.3 基因編輯小鼠之性腺傳承 (germline transmission) 30
3.3.4 基因編輯小鼠之Ucp1蛋白質表現定量 30
3.3.5 基因編輯小鼠之產乳表現測量 30
4. 試驗結果與討論 31
4.1 sgRNA可行性試驗之結果 31
4.2小鼠胚顯微注射之結果 32
4.3 小鼠性腺傳承之結果 35
4.4 基因編輯小鼠之Ucp1蛋白質定量結果 36
4.5 小鼠產乳表現之比較結果 37
5. 結論 39
6.參考文獻 41
-
dc.language.isozh_TW-
dc.subject解偶聯蛋白質1 (Ucp1)zh_TW
dc.subject棕色脂肪組織zh_TW
dc.subject產乳量zh_TW
dc.subjectCRISPR-Cas9zh_TW
dc.subjectHDLzh_TW
dc.subjectCRISPR-Cas9en
dc.subjectheat dissipation limit (HDL)en
dc.subjectuncoupling protein 1 (Ucp1)en
dc.subjectbrown adipose tissue (BAT)en
dc.subjectmilk productionen
dc.title以CRISPR-Cas9系統剔除小鼠UCP1基因對於生殖表現的影響zh_TW
dc.titleThe effects of UCP1 knockout by CRISPR-Cas9 system on mouse reproductive performanceen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳全木;宋麗英zh_TW
dc.contributor.oralexamcommitteeChuan-Mu Chen;Li-Ying Sungen
dc.subject.keyword棕色脂肪組織,解偶聯蛋白質1 (Ucp1),HDL,CRISPR-Cas9,產乳量,zh_TW
dc.subject.keywordbrown adipose tissue (BAT),uncoupling protein 1 (Ucp1),heat dissipation limit (HDL),CRISPR-Cas9,milk production,en
dc.relation.page52-
dc.identifier.doi10.6342/NTU202401201-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-06-18-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept動物科學技術學系-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf1.61 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved