請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92775完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳郁蕙 | zh_TW |
| dc.contributor.advisor | Yu-Hui Chen | en |
| dc.contributor.author | 陳泯宏 | zh_TW |
| dc.contributor.author | Min-Hong Chen | en |
| dc.date.accessioned | 2024-06-24T16:06:55Z | - |
| dc.date.available | 2024-06-25 | - |
| dc.date.copyright | 2024-06-24 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-06-07 | - |
| dc.identifier.citation | 方中柔、陳孟甫(2008)。目標區政策對農産品價格穩定性之研究。農業經濟叢刊,14(1),39-82。
王葳、胡士文(2003)。政策跨時搭配與農產品價格的動態調整。人文及社會科學集刊,15(4),595-625。 呂秀貞(2017)。國產甘藍與結球白菜運銷通路與價格之研究。臺灣大學農業經濟學系碩士論文。 洪忠修(2001)。掌握資訊,適量生產。豐年,51(04),38-39。 張晴晴(2017)。氣候因素對蔬菜價格的影響模式分析-以高麗菜為例。臺北大學統計學系碩士論文。 許漢卿(1995)。流通與管理-我們的蔬菜運銷問題在那裡。鄉間小路,21(03),12-16。 陳郁蕙、呂秀貞、陳雅惠、姜淳元(2020)。國產甘藍與結球白菜運銷通路分析。台灣農學會報,20(2),102-125。 葉憶雯(2019)。網路搜尋資訊在蔬菜價格預測之應用。臺北大學統計學系碩士論文。 路全利(2006)。青花苔與白花椰。鄉間小路,32(12),03-11。 農業部(2023)。中華民國111年農業統計年報。臺北:農業部。 農業部農糧署(2021)。大宗蔬菜播種量及供苗預警資訊網站,取自:https://www.afa.gov.tw/cht/index.php?code=list&flag=detail&ids=630&article_id=5529。 農業部農糧署(2021)。農產品批發市場交易行情站網站,取自:https://amis.afa.gov.tw/menu/VegMenuTransInfo.aspx。 農業部農糧署(2023)。中華民國111年臺灣地區農產品批發市場年報。臺北:農業部。 廖啟翔(2021)。以深度學習方式探討臺灣結球白菜之價格。臺灣大學農業經濟學系碩士論文。 行政院農業委員會(2022)。國產農漁畜產品教材 第一冊。臺北:農業部。 蕭政弘(2017)。甘藍產業特性與品種類型。台中農業專訊,96,6-9。 郭孚燿(2009)。花椰菜合理化施肥。豐年,59(04),34-35。 謝惠如(2022)。影響花椰菜與青花菜批發市場價格因素之研究。臺灣大學農業經濟學系碩士論文。 Akaike, H. (1974), A New Look at the Statistical Model Identification, IEEE Transactions on Automatic Control, 19, 716-723. Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. J. (2013). Phoneme recognition using time-delay neural networks. In Backpropagation (pp. 35-61). Psychology Press. ALHatali, A., & Soosaimanickam, A. (2018). A Comparative Study of the Efficient Data Mining Algorithm to find the most influenced factor on price variation in Oman Fish Markets. Sakarya University Journal of Computer and Information Sciences, 1(2), 1-16. Athey, S., & Imbens, G. W. (2019). Machine learning methods that economists should know about. Annual Review of Economics, 11, 685-725. Ljung, G. M., & Box, G. E. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2), 297-303. Baylis, K., Heckelei, T., & Storm, H. (2021). Machine learning in agricultural economics. In Handbook of Agricultural Economics (Vol. 5, pp. 4551-4612). Elsevier. Brown, R. G. (1959). Statistical forecasting for inventory control. McGraw-Hill. Canova, F., & Hansen, B. E. (1995). Are seasonal patterns constant over time? A test for seasonal stability. Journal of Business & Economic Statistics, 13(3), 237-252. Chakrabarti, A., & Ghosh, J. K. (2011). AIC, BIC and recent advances in model selection. Philosophy of statistics, 583-605. Cheung, Y. W., & Chinn, M. D. (1997). Further investigation of the uncertain unit root in GNP. Journal of Business & Economic Statistics, 15(1), 68-73. Crespo Cuaresma, J., Hlouskova, J., & Obersteiner, M. (2021). Agricultural commodity price dynamics and their determinants: A comprehensive econometric approach. Journal of Forecasting, 40(7), 1245-1273. Dahl, R. E., & Yahya, M. (2019). Price volatility dynamics in aquaculture fish markets. Aquaculture economics & management, 23(3), 321-340. Darekar, A., & Reddy, A. A. (2017). Cotton price forecasting in major producing states. Economic Affairs, 62(3), 373-378. Dave, E., Leonardo, A., Jeanice, M., & Hanafiah, N. (2021). Forecasting Indonesia exports using a hybrid model ARIMA-LSTM. Procedia Computer Science, 179, 480-487. Diebold, F. X., & Mariano, R. S. (2002). Comparing predictive accuracy. Journal of Business & economic statistics, 20(1), 134-144. Ferrer-Pérez, H., & Gracia-de-Rentería, P. (2020). Asymmetric price volatility transmission in the Spanish fresh wild fish supply chain. Marine Resource Economics, 35(1), 65-81. Frankel, J. A., & Rose, A. K. (2010). Determinants of agricultural and mineral commodity prices. HKS Faculty Research Working Paper Series. Friedman, M. (1937). The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance. Journal of the American Statistical Association, 32(200), 675–701. Friedman, M. (1939) A Correction. The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance. Journal of the American Statistical Association, 34, 109. Friedman, M. (1940). A comparison of alternative tests of significance for the problem of m rankings. The Annals of Mathematical Statistics. 11 (1): 86–92. Gardner, E. S., & McKenzie, E. (1985). Forecasting trends in time series. Management Science, 31(10), 1237–1246. Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In Proceedings of the fourteenth international conference on artificial intelligence and statistics (pp. 315-323). JMLR Workshop and Conference Proceedings. Hagan, M. T., Demuth, H. B., & Beale, M. (1997). Neural network design. PWS Publishing Co.. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. Holt, C. C. (2004). Forecasting seasonals and trends by exponentially weighted moving averages. International journal of forecasting, 20(1), 5-10. Hyndman, R.J., & Athanasopoulos, G. (2021) Forecasting: principles and practice, 3rd edition, OTexts: Melbourne, Australia. https://otexts.com/fpp3/ Jadhav, V., CHINNAPPA, R. B., & Gaddi, G. M. (2017). Application of ARIMA model for forecasting agricultural prices. Jaiswal, R., Jha, G. K., Kumar, R. R., & Choudhary, K. (2022). Deep long short-term memory based model for agricultural price forecasting. Neural Computing and Applications, 34(6), 4661-4676. Jha, G. K., & Sinha, K. (2014). Time-delay neural networks for time series prediction: an application to the monthly wholesale price of oilseeds in India. Neural Computing and Applications, 24, 563-571. Jofipasi, C. A. (2018). Selection for the best ETS (error, trend, seasonal) model to forecast weather in the Aceh Besar District. In IOP conference series: materials science and engineering (Vol. 352, No. 1, p. 012055). IOP Publishing. Jonathan, D. C., & Kung-Sik, C. (2008). Time series analysis with applications in R. Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?. Journal of econometrics, 54(1-3), 159-178. Kuo, H. H., & Chuang, C. T. (2017). Salmon importation and consumption in Taiwan. Aquaculture Economics & Management, 21(3), 315-333. Maddala, G. S., & Kim, I. M. (1998). Unit roots, cointegration, and structural change. Cambridge: Cambridge university press. Mgale, Y. J., Yan, Y., & Timothy, S. (2021). A comparative study of ARIMA and holt-winters exponential smoothing models for rice price forecasting in Tanzania. Open Access Library Journal, 8(5), 1-9. Mohammed, M. B., Zulkafli, H. S., Adam, M. B., Ali, N., & Baba, I. A. (2021, May). Comparison of five imputation methods in handling missing data in a continuous frequency table. In AIP Conference Proceedings (Vol. 2355, No. 1). AIP Publishing. Mullainathan, S., & Spiess, J. (2017). Machine learning: an applied econometric approach. Journal of Economic Perspectives, 31(2), 87-106. Osborn DR, Chui APL, Smith J, and Birchenhall CR (1988) “Seasonality and the order of integration for consumption”, Oxford Bulletin of Economics and Statistics 50(4):361-377. Phillips, P. C., & Perron, P. (1988). Testing for a unit root in time series regression. biometrika, 75(2), 335-346. Rahman, L. F., Marufuzzaman, M., Alam, L., Bari, M. A., Sumaila, U. R., & Sidek, L. M. (2021). Developing an ensembled machine learning prediction model for marine fish and aquaculture production. Sustainability, 13(16), 9124. Said, S. E., & Dickey, D. A. (1984). Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika, 71(3), 599-607. Schwarz, Gideon E. (1978). Estimating the dimension of a model, Annals of Statistics, 6 (2): 461–464 Talwar, A., & Goyal, C. K. (2019). A comparative study of various exponential smoothing models for forecasting coriander price in Indian commodity market. International bulletin of management and economics, 10, 143-155. Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. J. (2013). Phoneme recognition using time-delay neural networks. In Backpropagation (pp. 35-61). Psychology Press. Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management science, 6(3), 324-342. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92775 | - |
| dc.description.abstract | 臺灣全年都可以生產蔬菜,但因生產具季節性,加上受天候因素影響,所以蔬菜價格波動明顯,往往有「菜土菜金」的現象發生。目前國內生產超過百種以上蔬菜,又以花椰菜、青花菜、甘藍與結球白菜產量有最大的比重,被稱為大宗蔬菜,在市場上有舉足輕重的地位,故本研究將以這些蔬菜作為研究對象,分析其價格。
本研究利用2012年至2022年間,果菜批發市場價格作為研究標的,並利用傳統統計模型與類神經網絡等二大模型,包含差分整合自迴歸模型(ARIMA)、指數平滑法(ETS)、時間延遲類神經網絡(TDNN)與長短期記憶細胞類神經網絡(LSTM),對大宗蔬菜價格進行模型配適擬合與估計預測。 研究結果顯示,四種蔬菜價格分析適用的模型不盡相同。綜合而言,花椰菜價格預測以使用與前5期有自相關之ARIMA模型表現最佳,具有相對最小均方根誤差(RMSE)、平均絕對離差(MAD)與平均絕對誤差率(MAPE)以及最高之方向預測正確率;青花菜價格預測以輸入為前1期價格之LSTM模型相對優,RMSE與MAD為四者模型中最小;而甘藍價格的預測,以輸入為前1期的LSTM模型的表現相對突出,RMSE與MAD最小,並約有6成的方向預測正確;至於結球白菜價格的預測,運用與前2期有自相關之ARIMA模型相對其他模型來的良好,MAD、MAPE為四者模型中相對最小。大宗蔬菜最適預測模型所利用過去期數與最快生長期長短也有關聯,耗時較短時間種植的蔬菜最適模型預測需要的期數較短,反之亦然。然而,在實際價格變化過大時,模型預測往往會失準,在實際價格變化小時,LSTM模型預測較佳,而實際價格變動動大時,則是TDNN模型有較好的表現,較不易受到實際價格變化所造成預測效果之扭曲。 | zh_TW |
| dc.description.abstract | In Taiwan, vegetables can be produced year-round. But due to seasonality of production and impact of weather, vegetable prices change significantly, leading to a phenomenon where vegetable prices can suddenly rise like gold or fall like dirt. There are over a hundred types of vegetables produced in Taiwan. Among them, cauliflower, broccoli, kale, and cabbage hold a substantial share in production, being considered major vegetables in Taiwan with significant market influence. Therefore, this study will use these vegetables as research target to analyze their prices.
In this study, we use wholesale market prices of from 2012 to 2022 as the research target, and two models: traditional statistical models and neural networks, including the Autoregressive Integrated Moving Average (ARIMA), Exponential Smoothing (ETS), Time Delay Neural Network (TDNN), and Long Short-Term Memory (LSTM) neural networks. These models are used to fit and predict the prices of major vegetables. The result shows that the appropriate models for each vegetable are different. In general, for cauliflower price forecasting, the ARIMA performs best using 5-lag price autocorrelation, with relatively minimal Root Mean Square Error (RMSE), Mean Absolute Deviation (MAD), Mean Absolute Percentage Error (MAPE), and the highest direction forecasting accuracy. As for broccoli price forecasting, the LSTM with previous 1-period price as input demonstrates superiority, with the smallest RMSE and MAD. In the case of kale price forecasting, the performance of the LSTM with previous 1-period price as input is relatively prominent, with the smallest RMSE and MAD, and approximately 60% direction prediction accuracy. Regarding cabbage price forecasting, the ARIMA using 2-lag price performs well compared to the other models, with the smallest MAD and MAPE. The length of input used in the optimal models are related to the length of their growth period. Vegetables with shorter cultivation period require a greater number of periods for forecasting, and vice versa. However, when actual price changes largely, model forecasting accuracy tends to deviate. The LSTM performs better when change is small, while for large price change, the TDNN forecasting is less distorted. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-24T16:06:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-06-24T16:06:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
謝辭 ii 摘要 iii Abstract iv 目次 v 表次 vii 圖次 ix 第一章 緒論 1 第一節 研究背景、動機與目的 1 第二節 研究流程 3 第三節 論文架構 3 第二章 國產大宗蔬菜產業概況 4 第一節 國產大宗蔬菜生產概況 4 第二節 國產大宗蔬菜交易概況 16 第三節 小結 37 第三章 文獻回顧 39 第一節 農產品價格之相關研究 39 第二節 時間序列模型相關研究 41 第三節 小結 44 第四章 研究方法 46 第一節 傳統時間序列預測模型 46 第二節 類神經網絡預測模型 50 第三節 模型衡量指標 56 第五章 實證分析結果 60 第一節 資料來源與處理 60 第二節 敘述統計分析 64 第三節 差分整合移動平均自我迴歸估計 71 第四節 乘法模式之指數平滑法估計 78 第五節 時間延遲類神經網絡模型架構 83 第六節 長短期記憶類神經網絡模型架構 85 第七節 預測結果比較 87 第六章 結論與建議 97 第一節 結論 97 第二節 建議 98 參考文獻 99 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 價格預測 | zh_TW |
| dc.subject | 大宗蔬菜 | zh_TW |
| dc.subject | 批發市場價格 | zh_TW |
| dc.subject | TDNN | zh_TW |
| dc.subject | ETS | zh_TW |
| dc.subject | ARIMA | zh_TW |
| dc.subject | LSTM | zh_TW |
| dc.subject | major vegetables | en |
| dc.subject | ARIMA | en |
| dc.subject | ETS | en |
| dc.subject | TDNN | en |
| dc.subject | LSTM | en |
| dc.subject | wholesale market prices | en |
| dc.subject | price forecasting | en |
| dc.title | 國產大宗蔬菜價格預測模型之比較 | zh_TW |
| dc.title | A Comparative Analysis of Price Forecasting Models for Major Vegetables in Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 詹滿色;鄭佳宜 | zh_TW |
| dc.contributor.oralexamcommittee | Man-ser Jan;Chia-Yi Cheng | en |
| dc.subject.keyword | ARIMA,ETS,TDNN,LSTM,大宗蔬菜,批發市場價格,價格預測, | zh_TW |
| dc.subject.keyword | ARIMA,ETS,TDNN,LSTM,major vegetables,wholesale market prices,price forecasting, | en |
| dc.relation.page | 103 | - |
| dc.identifier.doi | 10.6342/NTU202400875 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-06-11 | - |
| dc.contributor.author-college | 共同教育中心 | - |
| dc.contributor.author-dept | 統計碩士學位學程 | - |
| dc.date.embargo-lift | 2029-06-07 | - |
| 顯示於系所單位: | 統計碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 6.58 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
