請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92754完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蕭湛東 | zh_TW |
| dc.contributor.advisor | Lawrence Hsiao | en |
| dc.contributor.author | 楊書瑋 | zh_TW |
| dc.contributor.author | Shu-Wei Yang | en |
| dc.date.accessioned | 2024-06-21T16:05:54Z | - |
| dc.date.available | 2024-06-22 | - |
| dc.date.copyright | 2024-06-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-06-14 | - |
| dc.identifier.citation | W. Brock, J. Lakonishok, and B. LeBaron. Simple technical trading rules and the stochastic properties of stock returns. The Journal of finance, 47(5):1731–1764, 1992.
M. M. Carhart. On persistence in mutual fund performance. The Journal of finance, 52(1):57–82, 1997. J.-F. Chen, W.-L. Chen, C.-P. Huang, S.-H. Huang, and A.-P. Chen. Financial time-series data analysis using deep convolutional neural networks. In 2016 7th International conference on cloud computing and big data (CCBD), pages 87–92. IEEE, 2016. S. Gu, B. Kelly, and D. Xiu. Empirical asset pricing via machine learning. The Review of Financial Studies, 33(5):2223–2273, 2020. S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning, pages 448–456. pmlr, 2015. J. Jiang, B. Kelly, and D. Xiu. (re-) imag (in) ing price trends. The Journal of Finance, 78(6):3193–3249, 2023. D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):1929–1958, 2014. M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13, pages 818–833. Springer, 2014. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92754 | - |
| dc.description.abstract | 許多投資人會利用技術分析來尋找股市的進出場時機藉此賺取報酬,儘管技術分析目前已經廣為使用,但其本身仍有些限制,因此本論文將深度學習中的圖像辨識技術應用在技術分析上,希望能改善技術分析的限制,同時又保有穩定的超額報酬。我們嘗試藉由週、月、季的技術線圖來預測台股市場個股的隔月價格趨勢,其中的技術線圖包含K棒、成交量及移動平均線,並透過卷積神經網路模型來實現價格趨勢預測。實證結果發現,短天期模型提供較優的預測能力,此外,模型在預測市值小個股的效果優於市值大個股,這顯示圖像辨識模型仍有其限制,儘管如此,我們相信深度學習於金融市場的應用依舊有很大的發展空間。 | zh_TW |
| dc.description.abstract | After the invention of technical analysis, many investors try to find out the excess return through technical analysis. However, despite the fact that technical analysis has been used generally, there still exists some restrictions. In order to deal with those restrictions, we try to apply image recognition technology into technical analysis. We hope we can improve the restriction and find out the excess return at the same time. We use the weekly, monthly and quarterly chart pattern and convolutional neural network to predict the price trend of next month in Taiwan stock market. The information in the chart pattern includes OHLC chart, volume and moving average. In our empirical result, we find that the weekly model provides the best performance on prediction. In addition, the performance on predicting the stocks with low market capital is better than those with large market capital. These results show our models still have some restrictions. Nevertheless, we believe the development of using deep learning in the financial field is still huge. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-21T16:05:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-06-21T16:05:54Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 iii 中文摘要 v 英文摘要 vii 第一章緒論 1 第二章模型建構 3 2.1 深度學習 3 2.2 資料圖形化 5 2.3 模型選擇 7 2.4 CNN 架構 8 第三章研究方法 11 3.1 資料來源 11 3.2 參數設定 12 3.3 模型訓練 13 第四章研究結果 17 4.1 預測結果 17 4.2 市值前百大公司 20 4.3 遷移學習 22 第五章結論 25 參考文獻 27 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | CNN | zh_TW |
| dc.subject | 圖像辨識技術 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 卷積神經網路 | zh_TW |
| dc.subject | 價格預測 | zh_TW |
| dc.subject | CNN | en |
| dc.subject | Image Recognition | en |
| dc.subject | Convolutional Neural Network | en |
| dc.subject | Deep Learning | en |
| dc.title | 運用圖像辨識模型於股票趨勢預測-以台股市場為例 | zh_TW |
| dc.title | Prediction of Price Trends based on CNN Model: A Case of Taiwan Stock Market | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 顏廣杰;陳思帆 | zh_TW |
| dc.contributor.oralexamcommittee | Kuang-Chieh Yen;Szu-fan Chen | en |
| dc.subject.keyword | 圖像辨識技術,深度學習,卷積神經網路,價格預測,CNN, | zh_TW |
| dc.subject.keyword | Image Recognition,Convolutional Neural Network,Deep Learning,CNN, | en |
| dc.relation.page | 28 | - |
| dc.identifier.doi | 10.6342/NTU202401099 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-06-15 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 財務金融學系 | - |
| dc.date.embargo-lift | 2029-06-13 | - |
| 顯示於系所單位: | 財務金融學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 788.38 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
