Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92752
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊姍樺zh_TW
dc.contributor.advisorShan-Hua Yangen
dc.contributor.author黃競魰zh_TW
dc.contributor.authorJing Wen Michelle Wongen
dc.date.accessioned2024-06-19T16:08:00Z-
dc.date.available2024-06-20-
dc.date.copyright2024-06-19-
dc.date.issued2024-
dc.date.submitted2024-06-03-
dc.identifier.citationAbbasi, T., & Abbasi, S. (2011). Ocean acidification: The newest threat to the global environment. Critical Reviews in Environmental Science and Technology, 41(18), 1601-1663.
Auman, A. J., Speake, C. C., & Lidstrom, M. E. (2001). nifH sequences and nitrogen fixation in type I and type II methanotrophs. Applied and environmental microbiology, 67(9), 4009-4016.
Bao-hua, L., Yan-peng, Z., Jin-long, W., & Guo-zhong, H. (2005). The topographical characteristics in the area off eastern Taiwan Island and their tectonic implication. Acta Oceanologica Sinica (in Chinese), 27(5), 82-91.
Beaudoin, Y., & Solgaard, A. (2010). Frozen heat: Global outlook on methane gas hydrates.
Begmatov, S., Savvichev, A. S., Kadnikov, V. V., Beletsky, A. V., Rusanov, I. I., Klyuvitkin, A. A., Novichkova, E. A., Mardanov, A. V., Pimenov, N. V., & Ravin, N. V. (2021). Microbial communities involved in methane, sulfur, and nitrogen cycling in the sediments of the Barents Sea. Microorganisms, 9(11), 2362.
Bellec, L., Cambon-Bonavita, M.-A., Durand, L., Aube, J., Gayet, N., Sandulli, R., Brandily, C., & Zeppilli, D. (2020). Microbial Communities of the Shallow-Water Hydrothermal Vent Near Naples, Italy, and Chemosynthetic Symbionts Associated With a Free-Living Marine Nematode [Original Research]. Frontiers in Microbiology, 11.
Bender, M., & Conrad, R. (1994). Methane oxidation activity in various soils and freshwater sediments: occurrence, characteristics, vertical profiles, and distribution on grain size fractions. Journal of Geophysical Research: Atmospheres, 99(D8), 16531-16540.
Bingjye, W., Jungfu, H., Jiannyuh, L., Fuwen, K., Yuehyuan, T., & Hsienshiow, T. (2005). Investigation into extremely acidic hydrothermal fluids off Kueishan Tao, Taiwan, China. Acta Oceanologica Sinica(1), 125-133.
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., & Asnicar, F. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature biotechnology, 37(8), 852-857.
Bourne, D. G., McDonald, I. R., & Murrell, J. C. (2001). Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Appl Environ Microbiol, 67(9), 3802-3809.
Brugler, M. R., & France, S. C. (2008). The mitochondrial genome of a deep-sea bamboo coral (Cnidaria, Anthozoa, Octocorallia, Isididae): genome structure and putative origins of replication are not conserved among octocorals. Journal of Molecular Evolution, 67, 125-136.
Buongiorno, J., Sipes, K., Wasmund, K., Loy, A., & Lloyd, K. G. (2020). Woeseiales transcriptional response to shallow burial in Arctic fjord surface sediment. PLoS One, 15(8), e0234839.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature methods, 13(7), 581-583.
CCAC, U. a. (2021). Global Methane Assessment.
Chan, B. K. K., Wang, T.-W., Chen, P.-C., Lin, C.-W., Chan, T.-Y., & Tsang, L. M. (2016). Community structure of macrobiota and environmental parameters in shallow water hydrothermal vents off Kueishan Island, Taiwan. PLoS One, 11(2), e0148675.
Chen, C.-P., Tseng, C.-H., Chen, C. A., & Tang, S.-L. (2011). The dynamics of microbial partnerships in the coral Isopora palifera. The ISME Journal, 5(4), 728-740.
Chimetto, L. A., Cleenwerck, I., Thompson, C. C., Brocchi, M., Willems, A., De Vos, P., & Thompson, F. L. (2010). Photobacterium jeanii sp. nov., isolated from corals and zoanthids. International journal of systematic and evolutionary microbiology, 60(12), 2843-2848.
Coker, D. J., Wilson, S. K., & Pratchett, M. S. (2014). Importance of live coral habitat for reef fishes. Reviews in Fish Biology and Fisheries, 24, 89-126.
Corbett, M. K., Anstiss, L., Gifford, A., Graham, R. M., & Watkin, E. L. (2021). Examining the osmotic response of acidihalobacter aeolianus after exposure to salt stress. Microorganisms, 10(1), 22.
Core Team, R. (2021). R: A language and environment for statistical computing [computer software]. Vienna, Austria: R Foundation for Statistical Computing.
Costello, A. M., & Lidstrom, M. E. (1999). Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Applied and environmental microbiology, 65(11), 5066-5074.
Dahms, H.-U., Schizas, N. V., James, R. A., Wang, L., & Hwang, J.-S. (2018). Marine hydrothermal vents as templates for global change scenarios. Hydrobiologia, 818(1), 1-10.
Dedysh, S. N., & Knief, C. (2018). Diversity and Phylogeny of Described Aerobic Methanotrophs. In Methane biocatalysis: paving the way to sustainability (pp. 17-42).
Deschaseaux, E., Stoltenberg, L., Hrebien, V., Koveke, E. P., Toda, K., & Eyre, B. D. (2019). Dimethylsulfide (DMS) fluxes from permeable coral reef carbonate sediments. Marine Chemistry, 208, 1-10.
Deschaseaux, E. S., Swan, H. B., Maher, D. T., Jones, G. B., Schulz, K. G., Koveke, E. P., Toda, K., & Eyre, B. D. (2022). The interplay between dimethyl sulfide (DMS) and methane (CH4) in a coral reef ecosystem. Frontiers in Marine Science, 9, 910441.
Dinno, A., & Dinno, M. A. (2017). Package ‘dunn. test’. CRAN Repos, 10, 1-7.
Eyre, B. D., Andersson, A. J., & Cyronak, T. (2014). Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nature Climate Change, 4(11), 969-976.
Galand, P. E., Ruscheweyh, H.-J., Salazar, G., Hochart, C., Henry, N., Hume, B. C. C., Oliveira, P. H., Perdereau, A., Labadie, K., Belser, C., Boissin, E., Romac, S., Poulain, J., Bourdin, G., Iwankow, G., Moulin, C., Armstrong, E. J., Paz-García, D. A., Ziegler, M., . . . Planes, S. (2023). Diversity of the Pacific Ocean coral reef microbiome. Nature Communications, 14(1), 3039.
Garcia-Soto, C., Cheng, L., Caesar, L., Schmidtko, S., Jewett, E. B., Cheripka, A., Rigor, I., Caballero, A., Chiba, S., & Báez, J. C. (2021). An overview of ocean climate change indicators: Sea surface temperature, ocean heat content, ocean pH, dissolved oxygen concentration, arctic sea ice extent, thickness and volume, sea level and strength of the AMOC (Atlantic Meridional Overturning Circulation). Frontiers in Marine Science, 8, 642372.
Giovannelli, D., Chung, M., Staley, J., Starovoytov, V., Le Bris, N., & Vetriani, C. (2016). Sulfurovum riftiae sp. nov., a mesophilic, thiosulfate-oxidizing, nitrate-reducing chemolithoautotrophic epsilonproteobacterium isolated from the tube of the deep-sea hydrothermal vent polychaete Riftia pachyptila. Int J Syst Evol Microbiol, 66(7), 2697-2701.
Giri, D. D., Shukla, P. N., Kashyap, S., Singh, P., Kashyap, A. K., & Pandey, K. D. (2007). Variation in methanotrophic bacterial population along an altitude gradient at two slopes in tropical dry deciduous forest. Soil Biology and Biochemistry, 39(9), 2424-2426.
Gower, J. C. (2014). Principal coordinates analysis. Wiley StatsRef: statistics reference online, 1-7.
Guerrero-Cruz, S., Vaksmaa, A., Horn, M. A., Niemann, H., Pijuan, M., & Ho, A. (2021). Methanotrophs: Discoveries, Environmental Relevance, and a Perspective on Current and Future Applications [Review]. Front Microbiol, 12, 678057.
H.-O. Pörtner, D. C. R., M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.). (2022). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. C. U. Press.
Han, C., Ye, Y., Pan, Y., Qin, H., Wu, G., & Chen, C.-T. A. (2014). Spatial distribution pattern of seafloor hydrothermal vents to the southeastern Kueishan Tao offshore Taiwan Island. Acta Oceanologica Sinica, 33, 37-44.
Han, Y., & Perner, M. (2015). The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines. Frontiers in Microbiology, 6, 137926.
Hanson, R. S., & Hanson, T. E. (1996). Methanotrophic bacteria. Microbiological reviews, 60(2), 439-471.
Hill, M. O., & Gauch Jr, H. G. (1980). Detrended correspondence analysis: an improved ordination technique. Vegetatio, 42(1), 47-58.
Hinger, I., Pelikan, C., & Mußmann, M. (2019). Role of the ubiquitous bacterial family Woeseiaceae for N2O production in marine sediments. Geophysical Research Abstracts,
Hirayama, H., Abe, M., Miyazaki, M., Nunoura, T., Furushima, Y., Yamamoto, H., & Takai, K. (2014). Methylomarinovum caldicuralii gen. nov., sp. nov., a moderately thermophilic methanotroph isolated from a shallow submarine hydrothermal system, and proposal of the family Methylothermaceae fam. nov. International journal of systematic and evolutionary microbiology, 64(Pt_3), 989-999.
Hirayama, H., Fuse, H., Abe, M., Miyazaki, M., Nakamura, T., Nunoura, T., Furushima, Y., Yamamoto, H., & Takai, K. (2013). Methylomarinum vadi gen. nov., sp. nov., a methanotroph isolated from two distinct marine environments. International journal of systematic and evolutionary microbiology, 63(Pt_3), 1073-1082.
Hirayama, H., Sunamura, M., Takai, K., Nunoura, T., Noguchi, T., Oida, H., Furushima, Y., Yamamoto, H., Oomori, T., & Horikoshi, K. (2007). Culture-dependent and-independent characterization of microbial communities associated with a shallow submarine hydrothermal system occurring within a coral reef off Taketomi Island, Japan. Applied and environmental microbiology, 73(23), 7642-7656.
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., & Caldeira, K. (2007). Coral reefs under rapid climate change and ocean acidification. science, 318(5857), 1737-1742.
Hoffmann, K., Bienhold, C., Buttigieg, P. L., Knittel, K., Laso-Pérez, R., Rapp, J. Z., Boetius, A., & Offre, P. (2020). Diversity and metabolism of Woeseiales bacteria, global members of marine sediment communities. The ISME Journal, 14(4), 1042-1056.
Holmes, A. J., Costello, A., Lidstrom, M. E., & Murrell, J. C. (1995). Evidence that participate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS microbiology letters, 132(3), 203-208.
Houghton, K. M., Carere, C. R., Stott, M. B., & McDonald, I. R. (2019). Thermophilic methanotrophs: In hot pursuit. FEMS Microbiology Ecology, 95(9), fiz125.
Hwang, J., & Lee, C. (2003). The mystery of underwater world for tourism of Kueishan Island, Taiwan. Northeastern Coast National Scenic Area Administration, Tourism Bureau, The Ministry of Transportation, and Communication, Taiwan (in Chinese).
Hwangbo, M., Shao, Y., Hatzinger, P. B., & Chu, K. H. (2023). Acidophilic methanotrophs: Occurrence, diversity, and possible bioremediation applications. Environmental Microbiology Reports, 15(4), 265-281.
IEA. (2021). Methane Tracker 2021.
Imhoff, J. F., Kyndt, J. A., & Meyer, T. E. (2022). Genomic Comparison, Phylogeny and Taxonomic Reevaluation of the Ectothiorhodospiraceae and Description of Halorhodospiraceae fam. nov. and Halochlorospira gen. nov. Microorganisms, 10(2), 295.
IPCC Core Writing Team, H. L. a. J. R. e. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC.
Jensen, S., Neufeld, J. D., Birkeland, N.-K., Hovland, M., & Murrell, J. C. (2008). Methane assimilation and trophic interactions with marine Methylomicrobium in deep-water coral reef sediment off the coast of Norway. FEMS Microbiology Ecology, 66(2), 320-330.
Kambara, H., Shinno, T., Matsuura, N., Matsushita, S., Aoi, Y., Kindaichi, T., Ozaki, N., & Ohashi, A. (2022). Environmental factors affecting the community of methane-oxidizing bacteria. Microbes and environments, 37(1), ME21074.
Khaleque, H. N., Fathollazadeh, H., González, C., Shafique, R., Kaksonen, A. H., Holmes, D. S., & Watkin, E. L. (2020). Unlocking survival mechanisms for metal and oxidative stress in the extremely acidophilic, halotolerant Acidihalobacter genus. Genes, 11(12), 1392.
Kim, M. G., Lee, J.-C., Park, D.-J., Li, W.-J., & Kim, C.-J. (2014). Alicyclobacillus tengchongensis sp. nov., a thermo-acidophilic bacterium isolated from hot spring soil. Journal of Microbiology, 52(10), 884-889.
Knief, C. (2015). Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker [Review]. Frontiers in Microbiology, 6.
Kolb, S., Knief, C., Stubner, S., & Conrad, R. (2003). Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Applied and environmental microbiology, 69(5), 2423-2429.
Krishnaswamy, V. G., Mani, K., Kumar, P. S., Rangasamy, G., Sridharan, R., Rethnaraj, C., Ganesh, S. S. A., Kalidas, S., Palanisamy, V., & Chellama, N. J. (2023). Prevalence of differential microbiome in healthy, diseased and nipped colonies of corals, Porites lutea in the Gulf of Kachchh, north-west coast of India. Environmental Research, 216, 114622.
Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American statistical Association, 47(260), 583-621.
Kuźniar, A., Furtak, K., Włodarczyk, K., Stępniewska, Z., & Wolińska, A. (2019). Methanotrophic bacterial biomass as potential mineral feed ingredients for animals. International Journal of Environmental Research and Public Health, 16(15), 2674.
Labella, A. M., Arahal, D. R., Castro, D., Lemos, M. L., & Borrego, J. J. (2017). Revisiting the genus Photobacterium: taxonomy, ecology and pathogenesis. Int Microbiol, 20(1), 1-10.
Legendre, P., & Anderson, M. J. (1999). Distance‐based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological monographs, 69(1), 1-24.
Li, J., Liu, C., He, X., Santosh, M., Hu, G., Sun, Z., Li, Y., Meng, Q., & Ning, F. (2019). Aerobic microbial oxidation of hydrocarbon gases: Implications for oil and gas exploration. Marine and Petroleum Geology, 103, 76-86.
Li, M., Jain, S., Baker, B. J., Taylor, C., & Dick, G. J. (2014). Novel hydrocarbon monooxygenase genes in the metatranscriptome of a natural deep‐sea hydrocarbon plume. Environmental microbiology, 16(1), 60-71.
Li, Y., Zhou, M., Wang, F., Wang, E. T., Du, Z., Wu, C., Zhang, Z., Liu, W., & Xie, Z. (2017). Photobacterium proteolyticum sp. nov., a protease-producing bacterium isolated from ocean sediments of Laizhou Bay. International journal of systematic and evolutionary microbiology, 67(6), 1835-1840.
López-Pérez, M., Haro-Moreno, J. M., Iranzo, J., & Rodriguez-Valera, F. (2020). Genomes of the “Candidatus Actinomarinales” order: highly streamlined marine epipelagic Actinobacteria. Msystems, 5(6), 10.1128/msystems. 01041-01020.
Mao, S.-H., Zhang, H.-H., Zhuang, G.-C., Li, X.-J., Liu, Q., Zhou, Z., Wang, W.-L., Li, C.-Y., Lu, K.-Y., Liu, X.-T., Montgomery, A., Joye, S. B., Zhang, Y.-Z., & Yang, G.-P. (2022). Aerobic oxidation of methane significantly reduces global diffusive methane emissions from shallow marine waters. Nature Communications, 13(1), 7309. https://doi.org/10.1038/s41467-022-35082-y
Maruya, Y., Nakayama, K., Sasaki, M., & Komai, K. (2023). Effect of dissolved oxygen on methane production from bottom sediment in a eutrophic stratified lake. Journal of Environmental Sciences, 125, 61-72.
McArdle, B. H., & Anderson, M. J. (2001). Fitting multivariate models to community data: a comment on distance‐based redundancy analysis. Ecology, 82(1), 290-297.
Mino, S., Kudo, H., Arai, T., Sawabe, T., Takai, K., & Nakagawa, S. (2014). Sulfurovum aggregans sp. nov., a hydrogen-oxidizing, thiosulfate-reducing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent chimney, and an emended description of the genus Sulfurovum. Int J Syst Evol Microbiol, 64(Pt 9), 3195-3201.
Molari, M., Hassenrueck, C., Laso-Pérez, R., Wegener, G., Offre, P., Scilipoti, S., & Boetius, A. (2023). A hydrogenotrophic Sulfurimonas is globally abundant in deep-sea oxygen-saturated hydrothermal plumes. Nature Microbiology, 8(4), 651-665.
Nguyen, D. H., Bettarel, Y., & Chu, H. H. (2023). An analysis of the bacterial community in and around scleractinian corals of Phu Quoc Island, Vietnam. Regional Studies in Marine Science, 60, 102817.
O''Reilly, C., Santos, I. R., Cyronak, T., McMahon, A., & Maher, D. T. (2015). Nitrous oxide and methane dynamics in a coral reef lagoon driven by pore water exchange: Insights from automated high‐frequency observations. Geophysical Research Letters, 42(8), 2885-2892.
Osudar, R., Matoušů, A., Alawi, M., Wagner, D., & Bussmann, I. (2015). Environmental factors affecting methane distribution and bacterial methane oxidation in the German Bight (North Sea). Estuarine, Coastal and Shelf Science, 160, 10-21.
Park, J.-R., Moon, S., Ahn, Y. M., Kim, J. Y., & Nam, K. (2005). Determination of environmental factors influencing methane oxidation in a sandy landfill cover soil. Environmental Technology, 26(1), 93-102.
Price, R. E., & Giovannelli, D. (2017). A Review of the Geochemistry and Microbiology of Marine Shallow-Water Hydrothermal Vents. In Reference Module in Earth Systems and Environmental Sciences. Elsevier.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids research, 41(D1), D590-D596.
Ribeiro, I., Antunes, J. T., Alexandrino, D. A., Tomasino, M. P., Almeida, E., Hilário, A., Urbatzka, R., Leão, P. N., Mucha, A. P., & Carvalho, M. F. (2023). Actinobacteria from Arctic and Atlantic deep-sea sediments—Biodiversity and bioactive potential. Frontiers in Microbiology, 14, 1158441.
Rivas, A. J., Lemos, M. L., & Osorio, C. R. (2013). Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans. Frontiers in Microbiology, 4, 63518.
Rizzo, C., Arcadi, E., Calogero, R., Ciro Rappazzo, A., Caruso, G., Maimone, G., Lo Giudice, A., Romeo, T., & Andaloro, F. (2024). Deciphering the evolvement of microbial communities from hydrothermal vent sediments in a global change perspective. Environmental Research, 240, 117514.
Ruppel, C. D. (2011). Methane hydrates and contemporary climate change. Nature Eduction Knowledge, 2(12), 12.
Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., et al. (2020). The Global Methane Budget 2000–2017. Earth Syst. Sci. Data, 12(3), 1561-1623.
Sharp, C. E., Smirnova, A. V., Graham, J. M., Stott, M. B., Khadka, R., Moore, T. R., Grasby, S. E., Strack, M., & Dunfield, P. F. (2014). Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments. Environmental microbiology, 16(6), 1867-1878.
Shiau, Y.-J., & Chiu, C.-Y. (2017). Changes in soil biochemical properties in a cedar plantation invaded by moso bamboo. Forests, 8(7), 222.
Shukla, P. N., Pandey, K., & Mishra, V. K. (2013). Environmental determinants of soil methane oxidation and methanotrophs. Critical Reviews in Environmental Science and Technology, 43(18), 1945-2011.
Srinivas, T., Bhaskar, Y. V., Bhumika, V., & Kumar, P. A. (2013). Photobacterium marinum sp. nov., a marine bacterium isolated from a sediment sample from Palk Bay, India. Systematic and applied microbiology, 36(3), 160-165.
Takeuchi, M. Methylocaldum. In Bergey''s Manual of Systematics of Archaea and Bacteria (pp. 1-5).
Tavormina, P. L. (2015). Methyloprofundus. Bergey''s Manual of Systematics of Archaea and Bacteria, 1-7.
Wang, F.-Y., & Liu, M.-Y. (2023). Microbial Community Diversity of Coral Reef Sediments on Liuqiu Island, Southwestern Taiwan. Journal of Marine Science and Engineering, 11(1), 85.
Wang, J., Zheng, Q., Wang, S., Zeng, J., Yuan, Q., Zhong, Y., Jiang, L., & Shao, Z. (2023). Characterization of two novel chemolithoautotrophic bacteria of Sulfurovum from marine coastal environments and further comparative genomic analyses revealed species differentiation among deep-sea hydrothermal vent and non-vent origins. Frontiers in Marine Science.
Wang, L., Cheung, M. K., Kwan, H. S., Hwang, J. S., & Wong, C. K. (2015). Microbial diversity in shallow‐water hydrothermal sediments of Kueishan Island, Taiwan as revealed by pyrosequencing. Journal of basic microbiology, 55(11), 1308-1318.
Wang, L., Cheung, M. K., Liu, R., Wong, C. K., Kwan, H. S., & Hwang, J.-S. (2017). Diversity of total bacterial communities and chemoautotrophic populations in sulfur-rich sediments of shallow-water hydrothermal vents off Kueishan Island, Taiwan. Microbial ecology, 73, 571-582.
Wang, Z., Wang, S., Lai, Q., Wei, S., Jiang, L., & Shao, Z. (2022). Sulfurimonas marina sp. nov., an obligately chemolithoautotrophic, sulphur-oxidizing bacterium isolated from a deep-sea sediment sample from the South China Sea. International journal of systematic and evolutionary microbiology, 72(10), 005582.
Weber, T., Wiseman, N. A., & Kock, A. (2019). Global ocean methane emissions dominated by shallow coastal waters. Nat Commun, 10(1), 4584.
Weerawongwiwat, V., Yoon, S., Kim, J.-H., Yoon, J.-H., Lee, J. S., Sukhoom, A., & Kim, W. (2021). Photobacterium arenosum sp. nov., isolated from marine sediment sand. International journal of systematic and evolutionary microbiology, 71(10), 005034.
Wickham, H., Chang, W., & Wickham, M. H. (2016). Package ‘ggplot2’. Create elegant data visualisations using the grammar of graphics. Version, 2(1), 1-189.
Yang, T. F., Lan, T. F., Lee, H.-F., Fu, C.-C., Chuang, P.-C., Lo, C.-H., Chen, C.-H., Chen, C.-T. A., & Lee, C.-S. (2005). Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications. Geochemical Journal, 39(5), 469-480.
Yu, Z., Wang, X., Han, G., Liu, X., & Zhang, E. (2018). Organic and inorganic carbon and their stable isotopes in surface sediments of the Yellow River Estuary. Scientific Reports, 8(1), 10825.
Zhang, Y., Zhang, X., Wang, F., Xia, W., & Jia, Z. (2020). Exogenous nitrogen addition inhibits sulfate-mediated anaerobic oxidation of methane in estuarine coastal sediments. Ecological Engineering, 158, 106021.
Zheng, K., Dong, Y., Liang, Y., Liu, Y., Zhang, X., Zhang, W., Wang, Z., Shao, H., Sung, Y. Y., & Mok, W. J. (2023). Genomic diversity and ecological distribution of marine Pseudoalteromonas phages. Marine life science & technology, 5(2), 271-285.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92752-
dc.description.abstract甲烷是三大主要溫室氣體之一,其全球暖化潛勢為二氧化碳的28-34倍。甲烷遍佈全球,在自然環境中如海洋、濕地都可發現其存在。海洋中的甲烷可由甲烷氧化菌進行分解,其中好氧甲烷氧化菌可利用甲烷單氧化酶 (pMMO) 將甲烷分解成甲醇並進入下一步的分解作用。此外,在淺層海洋底泥的相關研究中也有發現好氧甲烷氧化菌的蹤跡。龜山島作為本次研究的主要地點,是個同時具有淺海熱泉及珊瑚群聚的一個特殊海域;在龜首的部分具有淺海熱液噴口聚集地,而在另一側龜尾的部分則有豐富生態的珊瑚群聚。龜山島的特殊地理環境能提供我們探討並比較兩種生態的甲烷氧化潛力及甲烷氧化菌相組成之間的差異。本研究利用甲烷培養實驗及次世代定序技術,分析龜山島淺海熱泉及珊瑚群聚底泥中甲烷氧化潛力及甲烷氧化菌相,同時也分析位於台灣南部的墾丁及綠島的珊瑚礁底泥,進一步探討珊瑚群聚的甲烷消耗能力。實驗結果顯示,龜山島珊瑚群聚的底泥相對於淺海熱泉的底泥具有較高的甲烷氧化潛力,且甲烷氧化菌所擁有的功能基因 (pmoA) 的豐度的結果及甲烷氧化菌的菌相組成,推測珊瑚群聚的甲烷氧化潛力可能比淺海熱泉高。另外,墾丁和綠島的珊瑚礁底泥結果也與龜山島珊瑚群聚呈現一樣的趨勢。本研究結果同時展示珊瑚群聚底泥與淺海熱泉底泥的甲烷氧化的能力,提供未來探討這兩種生態的甲烷氧化菌在甲烷循環過程中,所扮演的角色及甲烷減排可能貢獻。此外,通過在龜山島的近海熱泉的甲烷氧化能力及甲烷氧化菌組成,可以預測未來海洋酸化對海洋環境的甲烷氧化活動所造成的影響及菌相的變化。zh_TW
dc.description.abstractMethane is a powerful greenhouse gas with 28-34 times greater global warming potential than carbon dioxide. However, methane has a shorter atmospheric lifetime, which means that reducing methane emissions could slow down the rate of global warming, faster than reducing carbon dioxide. Ocean is one of the natural methane budgets and in shallow layer marine sediment, aerobic methanotrophs which can consume methane to methanol through enzyme pMMO were found.
Kueishan Island, our study site is a special geological area that has a shallow-water hydrothermal vent at the front of Kueishan Island (Head) and the coral community located behind Kueishan Island (Tail), which allowed us to compare both methanotrophic activity and aerobic methanotrophs composition in two ecosystem’s sediments. Here we show that sediments of two different ecosystems had different methane oxidation rate. At the Tail site (coral community), the methane-oxidation rate was higher than at the Head site (hydrothermal vent) and the pmoA gene copy number showed the same trend. The microbiome composition results showed that coral community had aerobic methanotrophs and the abundance changed after methane incubation. In sum, the coral community had a higher methane-consuming ability and the presence of aerobic methanotrophs, compared to the shallow hydrothermal vent in Kueishan Island; the outcome in other coral reef (Kenting and Lyudao) also supported the results shown in Kueishan Island. Our results provided insight into the ability of coral community sediments to methane consuming. The aerobic methanotrophs and their roles played in the ocean methane cycle need to be further explored in the future. In addition, we could predict the future of methanotrophic activity and change in microbiome composition under the ocean acidification and global change based on the results of shallow-water hydrothermal vent in Kueishan Island.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-19T16:08:00Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-06-19T16:08:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 (Master Thesis Acceptance Certificate) ……………………….i
誌謝 (Acknowledgement)…………………………………………………………….ii
摘要 (Chinese Abstract)……………………………………………….….…….….… iii
Abstract…………………………………………………………………….….….….iv
Contents………………………………………………………………….….….….….vi
List of Figures …………………………………………………………………….…ix
List of tables ….….……….….….….….………………….….….….….….….….….xii
Chapter 1 Introduction……………………………………………………………….1
1.1 Methane as greenhouse gas……………………...………………........................1
1.2 Aerobic methanotrophs………………………………………………………... 2
1.3 Kueishan Island ………………………………………………………………5
1.4 Methanotrophic activity in shallow-water hydrothermal vent………………... 6
1.5 Methanotrophic activity in coral reef………………………………………... 6
1.6 Aim of this study……………………………………………………………... 8
Chapter 2 Materials and Methods………………………………………………….. 9
2.1 Sample collection………………………………………………………………9
2.2 Methane incubation experiment of marine sediments…………………………9
2.3 Microbial composition analysis in marine sediments…………………………12
2.3.1 DNA extraction…………………………………………………………12
2.3.2 Polymerase Chain Reaction (PCR) ………………………………………14
2.3.3 Gel extraction……………………………………………………………15
2.3.4 Barcoding PCR…………………………………………………………15
2.3.5 Library construction and Illumina sequencing……………………………16
2.3.6 Quantitative polymerase chain reaction (qPCR) …………………………17
2.4 Chemical and physical properties of marine sediments………………………18
2.4.1 Cation and anion determination…………………………………………18
2.4.2 Total carbon and total nitrogen determination……………………………19
2.5 Data analysis…………………………………………………………………20
Chapter 3 Results……………………………………………………………………..22
3.1 Methanotrophic activity in marine sediments…………………………………22
3.1.1 Methane consumption curve in each group of the methane incubation experiment……………………………………………………………………22
3.1.2 Methane oxidation rate of 5 location sediments………………………23
3.2 Microbiome analysis in marine sediments……………………………………24
3.2.1 Alpha diversity in 5 location sediments…………………………………24
3.2.2 Microbiome composition in 5 location sediments………………………24
3.2.3 Beta diversity in 5 location sediments……………………………………25
3.3 Methanotrophs analysis in marine sediments…………………………………26
3.3.1 Functional gene of methanotrophs (pmoA) copy number in 5 location sediments ………………………………………………………………………26
3.3.2 Methanotrophs composition in 5 location sediments ……………………28
3.4 Chemical and physical properties of marine sediments………………………29
3.4.1 Anion and cation concentration in 5 location sediments …………………29
3.2.2 Total carbon and nitrogen in 5 location sediments ………………………30
3.5 Environment parameters and interaction with marine sediments………………31
Chapter 4 Discussion………………………………………………………………..33
4.1 Aerobic methanotrophic activity in Kueishan Island……………………………33
4.2 Aerobic methanotrophic activity in coral reef locations………………………34
4.3 Microbiome composition in all locations ………………………………………35
4.4 Environment parameters that affect the methane oxidation rate and methanotrophs composition ……………………………………………………………………38
4.5 Methanotrophic activity and methanotrophs in the future global change……40
Chapter 5 Conclusion and Future Prospect…………………………………………42
Figures and Tables……………………………………………………………………43
References…………………………………………………………………………….93
Supplementary Information………………………………………………………….104
-
dc.language.isoen-
dc.subject龜山島zh_TW
dc.subject菌相zh_TW
dc.subject甲烷氧化zh_TW
dc.subject珊瑚群聚zh_TW
dc.subject淺海熱泉zh_TW
dc.subjectKueishan Islanden
dc.subjectShallow-water hydrothermal venten
dc.subjectCoral communityen
dc.subjectMethanotrophicen
dc.subjectMIcrobiomeen
dc.title龜山島珊瑚群聚與淺海熱泉之好氧甲烷氧化活性zh_TW
dc.titleAerobic methanotrophic activity in coral community and shallow-water hydrothermal vent in Kueishan Islanden
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee塗子萱;吳羽婷;楊松穎zh_TW
dc.contributor.oralexamcommitteeTzu-Hsuan Tu;Yu-Ting Wu;Sung-Yin Yangen
dc.subject.keyword龜山島,淺海熱泉,珊瑚群聚,甲烷氧化,菌相,zh_TW
dc.subject.keywordKueishan Island,Shallow-water hydrothermal vent,Coral community,Methanotrophic,MIcrobiome,en
dc.relation.page152-
dc.identifier.doi10.6342/NTU202400771-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-06-03-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept漁業科學研究所-
dc.date.embargo-lift2025-05-28-
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf4.04 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved