Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92751
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor黃心豪zh_TW
dc.contributor.advisorHsin-Haou Huangen
dc.contributor.author鄭暐翰zh_TW
dc.contributor.authorWei-Han Chengen
dc.date.accessioned2024-06-19T16:07:42Z-
dc.date.available2024-06-20-
dc.date.copyright2024-06-19-
dc.date.issued2024-
dc.date.submitted2024-06-12-
dc.identifier.citation[1] V. Hliva and G. Szebényi, "Non-Destructive Evaluation and Damage Determination of Fiber-Reinforced Composites by Digital Image Correlation," Journal of Nondestructive Evaluation, vol. 42, no. 2, p. 43, 2023.
[2] Q. Kong, J. Gu, B. Xiong, and C. Yuan, "Vision‐aided three‐dimensional damage quantification and finite element model geometric updating for reinforced concrete structures," Computer‐Aided Civil and Infrastructure Engineering, vol. 38, no. 17, pp. 2378-2390, 2023.
[3] B. Pan, "Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals," Measurement Science and Technology, vol. 29, no. 8, p. 082001, 2018.
[4] B. Pan, K. Qian, H. Xie, and A. Asundi, "Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review," Measurement science and technology, vol. 20, no. 6, p. 062001, 2009.
[5] R. Yang, Y. Li, D. Zeng, and P. Guo, "Deep DIC: Deep learning-based digital image correlation for end-to-end displacement and strain measurement," Journal of Materials Processing Technology, vol. 302, p. 117474, 2022.
[6] W. Peters and W. Ranson, "Digital imaging techniques in experimental stress analysis," Optical engineering, vol. 21, no. 3, p. 213427, 1982.
[7] M. A. Sutton, W. Wolters, W. Peters, W. Ranson, and S. McNeill, "Determination of displacements using an improved digital correlation method," Image and vision computing, vol. 1, no. 3, pp. 133-139, 1983.
[8] P. Bing, X. Hui-Min, X. Bo-Qin, and D. Fu-Long, "Performance of sub-pixel registration algorithms in digital image correlation," Measurement Science and Technology, vol. 17, no. 6, p. 1615, 2006.
[9] B. Pan, A. Asundi, H. Xie, and J. Gao, "Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements," Optics and Lasers in Engineering, vol. 47, no. 7-8, pp. 865-874, 2009.
[10] B. Pan, K. Li, and W. Tong, "Fast, robust and accurate digital image correlation calculation without redundant computations," Experimental Mechanics, vol. 53, pp. 1277-1289, 2013.
[11] G. Yang, Z. Cai, X. Zhang, and D. Fu, "An experimental investigation on the damage of granite under uniaxial tension by using a digital image correlation method," Optics and Lasers in Engineering, vol. 73, pp. 46-52, 2015.
[12] M. Mehdikhani, M. Aravand, B. Sabuncuoglu, M. G. Callens, S. V. Lomov, and L. Gorbatikh, "Full-field strain measurements at the micro-scale in fiber-reinforced composites using digital image correlation," Composite Structures, vol. 140, pp. 192-201, 2016.
[13] A. Acciaioli, G. Lionello, and M. Baleani, "Experimentally achievable accuracy using a digital image correlation technique in measuring small-magnitude (< 0.1%) homogeneous strain fields," Materials, vol. 11, no. 5, p. 751, 2018.
[14] B. Chen and B. Pan, "Camera calibration using synthetic random speckle pattern and digital image correlation," Optics and Lasers in Engineering, vol. 126, p. 105919, 2020.
[15] J. Heikkinen and G. S. Schajer, "Perspective error reduction in 2D Digital Image Correlation measurements by combination with Defocused Speckle Imaging," Optics and Lasers in Engineering, vol. 149, p. 106820, 2022.
[16] Z. Kahn-Jetter and T. Chu, "Three-dimensional displacement measurements using digital image correlation and photogrammic analysis," Experimental Mechanics, vol. 30, pp. 10-16, 1990.
[17] P. Luo, Y. Chao, M. Sutton, and W.-H. Peters, "Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision," Experimental mechanics, vol. 33, pp. 123-132, 1993.
[18] Z. Zhang, "A flexible new technique for camera calibration," IEEE Transactions on pattern analysis and machine intelligence, vol. 22, no. 11, pp. 1330-1334, 2000.
[19] D. Reagan, A. Sabato, and C. Niezrecki, "Unmanned aerial vehicle acquisition of three-dimensional digital image correlation measurements for structural health monitoring of bridges," in Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure 2017, 2017, vol. 10169: SPIE, pp. 68-77.
[20] Y. Wang, Z. Gao, Z. Fang, Y. Su, and Q. Zhang, "Rotating Vibration Measurement Using 3D Digital Image Correlation," Experimental Mechanics, vol. 63, no. 3, pp. 565-579, 2023.
[21] T. B. Abbott and F.-G. Yuan, "Subsurface impact damage imaging for composite structures using 3D digital image correlation," Structural Health Monitoring, vol. 23, no. 1, pp. 568-587, 2024.
[22] D. Solav, K. M. Moerman, A. M. Jaeger, K. Genovese, and H. M. Herr, "MultiDIC: An open-source toolbox for multi-view 3D digital image correlation," Ieee Access, vol. 6, pp. 30520-30535, 2018.
[23] I. A. Cabrera et al., "Seeing the Big Picture: Improving the prosthetic design cycle using 360 3D digital image correlation," Authorea Preprints, 2023.
[24] B. Chen, K. Genovese, and B. Pan, "Calibrating large-FOV Stereo digital image correlation system using phase targets and epipolar geometry," Optics and Lasers in Engineering, vol. 150, p. 106854, 2022.
[25] L. Yu and B. Pan, "Single-camera high-speed Stereo-digital image correlation for full-field vibration measurement," Mechanical Systems and Signal Processing, vol. 94, pp. 374-383, 2017.
[26] J. Li, X. Dan, W. Xu, Y. Wang, G. Yang, and L. Yang, "3D digital image correlation using single color camera pseudo-Stereo system," Optics & Laser Technology, vol. 95, pp. 1-7, 2017.
[27] X. Shao, J. Qu, and W. Chen, "Single-Camera Three-Dimensional Digital Image Correlation with Enhanced Accuracy Based on Four-View Imaging," Materials, vol. 16, no. 7, p. 2726, 2023.
[28] S. Ereiz, I. Duvnjak, and J. F. Jiménez-Alonso, "Review of finite element model updating methods for structural applications," Structures, vol. 41: Elsevier, pp. 684-723, 2022.
[29] B. Jaishi and W.-X. Ren, "Structural finite element model updating using ambient vibration test results," Journal of structural engineering, vol. 131, no. 4, pp. 617-628, 2005.
[30] E. Durmazgezer, U. Yucel, and O. Ozcelik, "Damage identification of a reinforced concrete frame at increasing damage levels by sensitivity-based finite element model updating," Bulletin of Earthquake Engineering, vol. 17, pp. 6041-6060, 2019.
[31] M. Sanayei, G. R. Imbaro, J. A. McClain, and L. C. Brown, "Structural model updating using experimental static measurements," Journal of structural engineering, vol. 123, no. 6, pp. 792-798, 1997.
[32] S. Schommer, V. H. Nguyen, S. Maas, and A. Zürbes, "Model updating for structural health monitoring using static and dynamic measurements," Procedia engineering, vol. 199, pp. 2146-2153, 2017.
[33] Q. Zhu, Y. L. Xu, and X. Xiao, "Multiscale modeling and model updating of a cable-stayed bridge. I: Modeling and influence line analysis," Journal of Bridge Engineering, vol. 20, no. 10, p. 04014112, 2015.
[34] W. Park, H.-K. Kim, and P. Jongchil, "Finite element model updating for a cable-stayed bridge using manual tuning and sensitivity-based optimization," Structural engineering international, vol. 22, no. 1, pp. 14-19, 2012.
[35] S. Kim, K. Y. Koo, and J.-J. Lee, "Bridge finite model updating approach by static load input/deflection output measurements: Field experiment," in Proceedings of the 2016 Structures Congress (Structures 16), Jeju Island, Republic of Korea, vol. 16, 2016.
[36] L. He, E. Reynders, J. H. García-Palacios, G. Carlo Marano, B. Briseghella, and G. De Roeck, "Wireless-based identification and model updating of a skewed highway bridge for structural health monitoring," Applied Sciences, vol. 10, no. 7, p. 2347, 2020.
[37] S. Qin, S. Han, and S. Li, "In-situ testing and finite element model updating of a long-span cable-stayed bridge with ballastless track," Structures, vol. 45: Elsevier, pp. 1412-1423, 2022.
[38] X. Wang, J. Zhang, Y. Sun, Z. Wu, N. F. C. Tchuente, and F. Yang, "Stiffness identification of deteriorated PC bridges by a FEMU method based on the LM-assisted PSO-Kriging model," Structures, vol. 43: Elsevier, pp. 374-387, 2022.
[39] V. Srinivas, K. Ramanjaneyulu, and C. A. Jeyasehar, "Multi-stage approach for structural damage identification using modal strain energy and evolutionary optimization techniques," Structural Health Monitoring, vol. 10, no. 2, pp. 219-230, 2011.
[40] Q. Pu, Y. Hong, L. Chen, S. Yang, and X. Xu, "Model updating–based damage detection of a concrete beam utilizing experimental damped frequency response functions," Advances in Structural Engineering, vol. 22, no. 4, pp. 935-947, 2019.
[41] J. S. Lee, J. E. Kim, and Y. Y. Kim, "Damage detection by the topology design formulation using modal parameters," International journal for numerical methods in engineering, vol. 69, no. 7, pp. 1480-1498, 2007.
[42] A. Saito, R. Sugai, Z. Wang, and H. Saomoto, "Damage identification using noisy frequency response functions based on topology optimization," Journal of Sound and Vibration, vol. 545, p. 117412, 2023.
[43] K. Ghahremani, A. Khaloo, S. Mohamadi, and D. Lattanzi, "Damage detection and finite-element model updating of structural components through point cloud analysis," Journal of Aerospace Engineering, vol. 31, no. 5, p. 04018068, 2018.
[44] Y. Gao, H. Li, W. Fu, C. Chai, and T. Su, "Damage volumetric assessment and digital twin synchronization based on LiDAR point clouds," Automation in Construction, vol. 157, p. 105168, 2024.
[45] J. Blaber, B. Adair, and A. Antoniou, "Ncorr: open-source 2D digital image correlation matlab software," Experimental Mechanics, vol. 55, no. 6, pp. 1105-1122, 2015.
[46] D. Solav and A. Silverstein, "Duodic: 3d digital image correlation in Matlab," Journal of Open Source Software, vol. 7, no. 74, p. 4279, 2022.
[47] L. Yang, Z. Fan, K. Wang, H. Sun, S. Hu, and J. Zhu, "Thermal Deformation Measurement of Aerospace Honeycomb Panel Based on Fusion of 3D-Digital Image Correlation and Finite Element Method," Photonics, vol. 10, no. 2: MDPI, p. 217, 2023.
[48] E. Andreassen, A. Clausen, M. Schevenels, B. S. Lazarov, and O. Sigmund, "Efficient topology optimization in MATLAB using 88 lines of code," Structural and Multidisciplinary Optimization, vol. 43, pp. 1-16, 2011.
[49] K. Liu and A. Tovar, "An efficient 3D topology optimization code written in Matlab," Structural and multidisciplinary optimization, vol. 50, pp. 1175-1196, 2014.
[50] H. Niemann, J. Morlier, A. Shahdin, and Y. Gourinat, "Damage localization using experimental modal parameters and topology optimization," Mechanical systems and signal processing, vol. 24, no. 3, pp. 636-652, 2010.
[51] K. Ryuzono, S. Yashiro, S. Onodera, and N. Toyama, "Performance evaluation of crack identification using density-based topology optimization for experimentally visualized ultrasonic wave propagation," Mechanics of Materials, vol. 172, p. 104406, 2022.
[52] O. Sigmund, "Morphology-based black and white filters for topology optimization," Structural and Multidisciplinary Optimization, vol. 33, pp. 401-424, 2007.
[53] J. N. Yang, Y. Xia, and C.-H. Loh, "Damage identification of bolt connections in a steel frame," Journal of Structural Engineering, vol. 140, no. 3, p. 04013064, 2014.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92751-
dc.description.abstract結構的維護與損傷檢測對於保障結構的使用安全與壽命非常重要,然而在檢測與評估過程中隱藏於表面之下的損傷卻容易被忽視,在現有的檢測方法中,有能力對於隱藏於內部進行檢測的檢測方法所需的成本都非常高昂。
在本研究中將打破過往影像方法僅能對結構表面進行檢測與分析的限制,提出將影像方法中的立體數位影像相關法結合有限元模型更新方法對於結構模型進行重建,藉此達到對於結構內部損傷進行檢測與評估的目的,為影像方法與內部損傷檢測方法提出一個全新的發展方向。
本文提出的方法共分為三個步驟,首先使用立體數位影像相關法獲取結構表面的真實位移與應變,此時所獲取的資料僅包含表面資料,因此需藉由下一階段的模型更新進行結構重建,此階段分為兩個步驟,首先透過拓樸優化對於結構的參數分布進行初步的估計,藉此劃分健康區域與損傷區域,接著透過參數掃描對於健康區域與損傷區域進行參數數值的更新,經由此流程便能對於結構隱藏於表面之下的區域進行損傷檢測與評估。
為了驗證本研究所提出方法對於損傷檢測與評估的準確性,本研究透過數值實驗的方式產生已知的損傷區域與參數分布,透過將數值實驗的表面資料進行模型更新流程,對於模型結構進行重建,透過重建結果進行損傷檢測與評估,並與數值實驗已知的正確答案進行比較,驗證所提出方法的準確性。最終為了證實本研究於實際應用上的可行性與適用性,以數值實驗討論了較為複雜的損傷情況,並實際的透過立體數位影像相關法進行表面資料的獲取並應用於所提出之方法,進行結構重建以對於隱藏於表面之下的損傷進行評估。
zh_TW
dc.description.abstractMaintenance and damage detection of structures are crucial for ensuring their safe usage and longevity. However, damage hidden beneath the surface during inspection and assessment processes can easily be overlooked. Existing detection methods capable of inspecting internal hidden damages incur significantly high costs. In this study aim to break the limitations of conventional imaging methods, which are only capable of detecting and analyzing structures' surface, by proposing the integration of Stereoscopic digital image correlation techniques with finite element model updating methods. This approach aims to reconstruct structural models, thereby enabling detection and assessment of internal damages. This novel approach presents a new direction for both imaging methods and internal damage detection methods.
The method proposed in this paper consists of three main steps. Firstly, Stereoscopic digital image correlation is used to obtain real displacements and strains on the surface of the structure. At this stage, the acquired data only includes surface information. Therefore, the next stage involves structural reconstruction through model updating, which consists of two steps. Initially, topological optimization is employed to estimate the distribution of parameters in the structure, thereby delineating healthy and damaged areas. Subsequently, parameter scanning is utilized to update the parameter values in both healthy and damaged areas. Through this process, detection and assessment of damage in regions hidden beneath the surface of the structure can be achieved.
To validate the accuracy of the damage detection and assessment method proposed in this study, numerical experiments were conducted. Surface data obtained from numerical experiments underwent a model updating process to reconstruct the structural model. Subsequently, damage detection and assessment were performed based on the reconstructed results, and comparisons were made with the settings of numerical experiments to verify the accuracy of the proposed method. Finally, to demonstrate the feasibility and applicability of the proposed method in real-world applications, Stereoscopic digital image correlation was utilized to obtain surface data, which was then applied to the proposed method for structural reconstruction, allowing for the evaluation of damage hidden beneath the surface.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-19T16:07:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-06-19T16:07:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
目次 vi
表次 ix
圖次 x
名詞對照表 xiv
符號說明表 xvi
第一章 緒論 1
1.1 研究動機 1
1.2 研究背景 2
1.3 研究目的 3
1.4 重要性與貢獻 4
1.5 研究流程 5
第二章 文獻探討 7
2.1 數位影像相關法 (DIC) 7
2.1.1 二維全場數位影像相關 (2D-DIC) 7
2.1.2 立體數位影像相關法 (Stereo-DIC) 9
2.2 有限元模型更新 (FEMU) 10
2.3 結構健康監測應用有限元模型更新 12
2.3.1 大型結構模型校正 12
2.3.2 結構強度評估 14
2.3.3 影像方法進行模型更新 16
第三章 研究方法 17
3.1 相機模型 17
3.1.1 世界座標與相機座標間線性轉換 18
3.1.2 相機座標與像素座標間投影轉換 20
3.2 數位影像相關法 23
3.2.1 數位影像相關法整像素位移計算 25
3.2.2 亞像素位移計算:逆合成高斯牛頓法 27
3.2.3 數位影像相關法應變計算 30
3.3 立體數位影像相關法 31
3.3.1 相機校正 31
3.3.2 三角定位 35
3.3.3 全場立體重建及位移計算 37
3.4 有限元模型更新 39
3.4.1 有限元模型更新問題的定義 40
3.4.2 拓樸優化 40
3.4.3 模型參數更新:參數掃描 44
3.5 實驗設備介紹 44
第四章 模型更新方法的建立與驗證 45
4.1 模型更新初始設置 45
4.1.1 初始有限元模型 45
4.1.2 參數更新模型 46
4.1.3 測試資料集 48
4.2 拓樸優化估計參數分布 49
4.2.1 案例一:結構損傷位於背面 49
4.2.2 案例二:結構損傷位於正面 53
4.2.3 模型更新準確性分析 56
4.3 參數掃描進行模型參數更新 60
4.3.1 參數掃描目的 60
4.3.2 案例一參數更新 61
4.3.3 案例二參數更新 64
4.3.4 案例三參數更新 67
第五章 模型更新於損傷檢測應用與討論 71
5.1 初始材料參數錯誤討論 71
5.1.1 實驗目的與數值實驗案例設置 71
5.1.2 實驗結果與分析 71
5.2 數值實驗案例討論 72
5.2.1 實驗目的與數值實驗案例設置 72
5.2.2 案例四損傷檢測與評估結果 74
5.2.3 案例五損傷檢測與評估結果 77
5.2.4 案例六損傷檢測與評估結果 80
5.3 應用模型更新於實際影像檢測結果 83
5.3.1 實驗目的 83
5.3.2 模型更新初始參數設置 83
5.3.3 影像方法實驗架設與檢測結果 84
5.3.4 模型重建損傷檢測與評估結果 87
第六章 結論與未來展望 91
6.1 結論 91
6.2 未來展望 92
參考文獻 94
-
dc.language.isozh_TW-
dc.subject立體數位影像相關法zh_TW
dc.subject模型更新zh_TW
dc.subject損傷評估zh_TW
dc.subject非接觸式檢測zh_TW
dc.subject模型重建zh_TW
dc.subjectDamage Assessmenten
dc.subjectStereo Digital Image Correlationen
dc.subjectNon-contact methoden
dc.subjectModel Reconstructionen
dc.subjectModel Updatingen
dc.title結合立體數位影像相關法與有限元模型更新方法於結構隱藏損傷評估zh_TW
dc.titleIntegration Stereo digital image correlation with finite element model updating method for structural hidden damage assessmenten
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張恆華;李佳翰;周光武zh_TW
dc.contributor.oralexamcommitteeHerng-Hua Chang;Jia-Han Li;Kuang-Wu Chouen
dc.subject.keyword立體數位影像相關法,模型更新,損傷評估,非接觸式檢測,模型重建,zh_TW
dc.subject.keywordStereo Digital Image Correlation,Model Updating,Damage Assessment,Model Reconstruction,Non-contact method,en
dc.relation.page97-
dc.identifier.doi10.6342/NTU202401126-
dc.rights.note未授權-
dc.date.accepted2024-06-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
Appears in Collections:工程科學及海洋工程學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
7.6 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved