Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 會計學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92750
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王泰昌zh_TW
dc.contributor.advisorTay-Chang Wangen
dc.contributor.author歐晉宏zh_TW
dc.contributor.authorJin-Hong Ouen
dc.date.accessioned2024-06-19T16:07:25Z-
dc.date.available2024-06-20-
dc.date.copyright2024-06-19-
dc.date.issued2024-
dc.date.submitted2024-06-14-
dc.identifier.citationAlbawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional neural network. 2017 international conference on engineering and technology (ICET),
Alkhatib, K., Najadat, H., Hmeidi, I., & Shatnawi, M. K. A. (2013). Stock price prediction using k-nearest neighbor (kNN) algorithm. International Journal of Business, Humanities and Technology, 3(3), 32-44.
Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The journal of finance, 23(4), 589-609.
Altman, E. I., Haldeman, R. G., & Narayanan, P. (1977). ZETATM analysis A new model to identify bankruptcy risk of corporations. Journal of banking & finance, 1(1), 29-54.
Andrade, G., & Kaplan, S. N. (1998). How costly is financial (not economic) distress? Evidence from highly leveraged transactions that became distressed. The journal of finance, 53(5), 1443-1493.
Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of accounting research, 71-111.
Bebis, G., & Georgiopoulos, M. (1994). Feed-forward neural networks. Ieee Potentials, 13(4), 27-31.
Begley, J., Ming, J., & Watts, S. (1996). Bankruptcy classification errors in the 1980s: An empirical analysis of Altman''s and Ohlson''s models. Review of accounting Studies, 1, 267-284.
Blum, M. (1974). Failing company discriminant analysis. Journal of accounting research, 1-25.
Breiman, L. (1996). Bagging predictors. Machine learning, 24, 123-140.
Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
Carmona, P., Climent, F., & Momparler, A. (2019). Predicting failure in the US banking sector: An extreme gradient boosting approach. International Review of Economics & Finance, 61, 304-323.
Daily, C. M., & Dalton, D. R. (1994). Corporate governance and the bankrupt firm: An empirical assessment. Strategic Management Journal, 15(8), 643-654.
Elloumi, F., & Gueyié, J. P. (2001). Financial distress and corporate governance: an empirical analysis. Corporate Governance: The international journal of business in society, 1(1), 15-23.
Gilson, S. C. (1989). Management turnover and financial distress. Journal of financial Economics, 25(2), 241-262.
Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. Proceedings of the thirteenth international conference on artificial intelligence and statistics,
Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K. (2003). KNN model-based approach in classification. On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, November 3-7, 2003. Proceedings,
Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., & Scholkopf, B. (1998). Support vector machines. IEEE Intelligent Systems and their applications, 13(4), 18-28.
Hosaka, T. (2019). Bankruptcy prediction using imaged financial ratios and convolutional neural networks. Expert systems with applications, 117, 287-299.
Huang, Y.-P., & Yen, M.-F. (2019). A new perspective of performance comparison among machine learning algorithms for financial distress prediction. Applied Soft Computing, 83, 105663.
Hui, X.-F., & Sun, J. (2006). An application of support vector machine to companies’ financial distress prediction. Modeling Decisions for Artificial Intelligence: Third International Conference, MDAI 2006, Tarragona, Spain, April 3-5, 2006. Proceedings 3,
Imandoust, S. B., & Bolandraftar, M. (2013). Application of k-nearest neighbor (knn) approach for predicting economic events: Theoretical background. International journal of engineering research and applications, 3(5), 605-610.
Jan, C.-l. (2021). Financial information asymmetry: Using deep learning algorithms to predict financial distress. Symmetry, 13(3), 443.
Lau, A. H.-L. (1987). A five-state financial distress prediction model. Journal of accounting research, 127-138.
LaValley, M. P. (2008). Logistic regression. Circulation, 117(18), 2395-2399.
Liang, D., Tsai, C.-F., & Wu, H.-T. (2015). The effect of feature selection on financial distress prediction. Knowledge-Based Systems, 73, 289-297.
Marso, S., & El Merouani, M. (2020). Predicting financial distress using hybrid feedforward neural network with cuckoo search algorithm. Procedia Computer Science, 170, 1134-1140.
Medsker, L. R., & Jain, L. (2001). Recurrent neural networks. Design and Applications, 5(64-67), 2.
Montana, D. J., & Davis, L. (1989). Training feedforward neural networks using genetic algorithms. IJCAI,
Mselmi, N., Lahiani, A., & Hamza, T. (2017). Financial distress prediction: The case of French small and medium-sized firms. International review of financial analysis, 50, 67-80.
Murphy, K. P. (2006). Naive bayes classifiers. University of British Columbia, 18(60), 1-8.
Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in neurorobotics, 7, 21.
O''shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458.
Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of accounting research, 109-131.
Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. International conference on machine learning,
Peng, Y., Chen, Z., & Wang, J. (2023). Dynamic Early-Warning of Enterprise Financial Distress Based on Gradient Boosting Algorithm.
Rustam, Z., & Saragih, G. S. (2018). Predicting bank financial failures using random forest. 2018 International Workshop on Big Data and Information Security (IWBIS),
Schapire, R. E. (2013). Explaining adaboost. In Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik (pp. 37-52). Springer.
Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. The journal of business, 74(1), 101-124.
Song, Y.-Y., & Ying, L. (2015). Decision tree methods: applications for classification and prediction. Shanghai archives of psychiatry, 27(2), 130.
Sun, J., Jia, M.-y., & Li, H. (2011). AdaBoost ensemble for financial distress prediction: An empirical comparison with data from Chinese listed companies. Expert systems with applications, 38(8), 9305-9312.
Sutskever, I. (2013). Training recurrent neural networks. University of Toronto Toronto, ON, Canada.
Svozil, D., Kvasnicka, V., & Pospichal, J. (1997). Introduction to multi-layer feed-forward neural networks. Chemometrics and intelligent laboratory systems, 39(1), 43-62.
Tinoco, M. H., & Wilson, N. (2013). Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables. International review of financial analysis, 30, 394-419.
Tölö, E. (2020). Predicting systemic financial crises with recurrent neural networks. Journal of Financial Stability, 49, 100746.
Tunio, F. H., Ding, Y., Agha, A. N., Agha, K., & Panhwar, H. U. R. Z. (2021). Financial distress prediction using adaboost and bagging in Pakistan stock exchange. The Journal of Asian Finance, Economics and Business, 8(1), 665-673.
Ul Hassan, E., Zainuddin, Z., & Nordin, S. (2017). A review of financial distress prediction models: logistic regression and multivariate discriminant analysis. Indian-Pacific Journal of Accounting and Finance, 1(3), 13-23.
Webb, G. I., Keogh, E., & Miikkulainen, R. (2010). Naïve Bayes. Encyclopedia of machine learning, 15(1), 713-714.
Whitaker, R. B. (1999). The early stages of financial distress. Journal of economics and finance, 23(2), 123-132.
Wruck, K. H. (1990). Financial distress, reorganization, and organizational efficiency. Journal of financial Economics, 27(2), 419-444.
Wu, J. (2017). Introduction to convolutional neural networks. National Key Lab for Novel Software Technology. Nanjing University. China, 5(23), 495.
Zhang, H. (2004). The optimality of naive Bayes. Aa, 1(2), 3.
Zheng, Q., & Yanhui, J. (2007). Financial distress prediction based on decision tree models. 2007 IEEE International Conference on Service Operations and Logistics, and Informatics,
Zmijewski, M. E. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of accounting research, 59-82.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92750-
dc.description.abstract本研究針對財務危機預測,開發了一種使用機器學習技術及AI方法的財務危機預警模型。考慮到財務危機的複雜性,本研究結合了財務比率、公司治理指標、市場數據和總體經濟指標等多方面指標,並運用了羅吉斯迴歸、隨機森林、支援向量機、神經網路在內等多種機器學習演算法及AI方法來建立預測模型。
研究結果顯示,單純貝氏分類器在各演算法中表現最佳,特別是在召回率方面具有顯著優勢,能有效辨識財務危機公司,降低金融機構的風險。進一步指出,經濟成長率和公司治理指標是影響財務危機預測的關鍵因素。本研究的貢獻在於提供了一個綜合多方面思考之財務危機預測模型,為金融機構在風險管理和決策方面提供了有效之工具。
zh_TW
dc.description.abstractThis study develops a financial distress early warning model that employs machine learning techniques and AI methods to predict financial distress. Given the complexity of financial distress, this study integrates a variety of indicators including financial ratios, corporate governance metrics, market data, and macroeconomic indicators. The prediction model was constructed using a variety of machine learning algorithms and AI methods, such as logistic regression, random forests, support vector machines, and neural networks.
The results indicate that the Naive Bayes classifier performed the best among all algorithms, particularly in terms of recall rate, effectively identifying companies at risk of financial distress and reducing risk for financial institutions. Furthermore, it was found that economic growth rates and corporate governance metrics are critical factors affecting the prediction of financial distress. The contribution of this study lies in providing a comprehensive financial distress prediction model that incorporates multi-dimensional thinking, offering effective tools for risk management and decision-making in financial institutions.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-19T16:07:25Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-06-19T16:07:25Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 I
中文摘要 II
ABSTRACT III
目次 IV
圖次 V
表次 VI
第一章 緒論 1
第一節 研究動機與背景 1
第二節 研究目的 2
第三節 研究流程 3
第二章 文獻回顧 4
第一節 預測財務危機 4
第二節 機器學習與深度學習方法 8
第三章 研究方法 18
第一節 資料選取 18
第二節 資料自變數及應變數 18
第三節 模型建立與評估方式 20
第四章 實證結果 23
第一節 敘述性統計 23
第二節 模型預測結果 25
第三節 模型預測結果比較 39
第四節 Z-SCORE與機器學習模型預測結果比較分析 40
第五章 結論與建議 43
第一節 研究結論 43
第二節 研究限制 45
第三節 研究建議 46
參考文獻 47
-
dc.language.isozh_TW-
dc.subject機器學習zh_TW
dc.subject總體經濟指標zh_TW
dc.subject預警模型zh_TW
dc.subject財務危機預測zh_TW
dc.subject財務比率zh_TW
dc.subjectAI方法zh_TW
dc.subject公司治理zh_TW
dc.subjectEarly Warning Modelen
dc.subjectCorporate Governanceen
dc.subjectFinancial Ratiosen
dc.subjectAI Methodsen
dc.subjectFinancial Distress Predictionen
dc.subjectMachine Learningen
dc.subjectMacroeconomic Indicatorsen
dc.title財務危機預測方法與比較zh_TW
dc.titleFinancial Distress Prediction Methods and Comparisonen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉嘉雯;林瑞青zh_TW
dc.contributor.oralexamcommitteeChia-Wen Liu;Ruey-Ching Linen
dc.subject.keyword財務危機預測,機器學習,AI方法,財務比率,公司治理,總體經濟指標,預警模型,zh_TW
dc.subject.keywordFinancial Distress Prediction,Machine Learning,AI Methods,Financial Ratios,Corporate Governance,Macroeconomic Indicators,Early Warning Model,en
dc.relation.page52-
dc.identifier.doi10.6342/NTU202401140-
dc.rights.note未授權-
dc.date.accepted2024-06-14-
dc.contributor.author-college管理學院-
dc.contributor.author-dept會計學系-
顯示於系所單位:會計學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
1.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved