請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92739完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊雯如 | zh_TW |
| dc.contributor.advisor | Wen-Ju Yang | en |
| dc.contributor.author | 黃彥華 | zh_TW |
| dc.contributor.author | Yen-Hua Huang | en |
| dc.date.accessioned | 2024-06-18T16:06:17Z | - |
| dc.date.available | 2024-06-19 | - |
| dc.date.copyright | 2024-06-18 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-06-17 | - |
| dc.identifier.citation | 行政院農委會. 2019. 農業統計年報.
林益昇、鄧汀欽. 2005. 瓜菜類病害. 台灣農家要覽增修訂三版. 農作篇(三) : 198-208. 徐陳翔. 2021. 苦瓜種子發育及種子活勢檢測. 國立台灣大學園藝學研究所論文. 臺北. 張有明、劉邦基、蕭吉雄、許圳塗. 1999. 苦瓜果實構造及發育之研究I.苦瓜果實構造與受精過程. 中華農業研究48:23-31. 張有明、鄭櫻慧、許華欣、黃鵬林. 2000. 苦瓜果實構造及發育之研究II.苦瓜肧、種子和果實的發育. 中華農業研究. 49:49-60. 黃玉梅. 2011. 利用超音波處理促進苦瓜種子活力之研究. 植物種苗. 13:53-67. 郭華仁. 2016. 種子學. 國立台灣大學出版中心. 臺北. 臺灣. 陳甘澍、李碩朋. 1995. 苦瓜. 台灣農家要覽增修訂再版. 農作篇(二) : 481-486. 陳品叡. 2019. 臺灣苦瓜產銷供應鏈之研究. 國立台灣大學農業經濟學研究所論文. 臺北. Abou-Hussein, S.D. 2012. Climate change and its impact on the productivity and quality of vegetable crops. J. Appl. Sci. Res 8:4359-4383. Al-Maskri, A., M. Khan, O. Al-Manther, and K. Al-Habsi. 2002. Effect of accelerated aging on lipid peroxidation, leakage and seedling vigor (RGR) in cucumber (Cucumis sativus L.) seeds. Pakistan J. Agr. Sci. 39:330-337. Baek, J.-S., E.E. Cho, D.-B. Lee, and N.-J. Chung. 2018. Evaluation of seed vigor tests for predicting seedling establishment at low temperature in rice (Oryza sativa L.). J. Crop Sci. and Biotechnol. 21:155-163. Baskin, C.C., O. Zackrisson, and J.M. Baskin. 2002. Role of warm stratification in promoting germination of seeds of Empetrum hermaphroditum (Empetraceae), a circumboreal species with a stony endocarp. Amer. J. Bot. 89:486-493. Baskin, J.M. and C.C. Baskin. 2004. A classification system for seed dormancy. Seed Sci. Res. 14:1-16. Bewley, J.D. 1980. Secondary dormancy (skotodormancy) in seeds of lettuce (Lactuca sativa cv. Grand Rapids) and its release by light, gibberellic acid and benzyladenine. Physiol. plantarum 49:277-280. Bewley, J.D., K. Bradford, and H. Hilhorst. 2012. Seeds: physiology of development, germination and dormancy. Springer Science & Business Media. Bita, C. and T. Gerats. 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Sci. 4. Bopper, S. and M. Kruse. 2018. Temperature mediated physiological dormancy in dry bitter gourd (Momordica charantia) seeds. Seed Sci. and Technol. 46:19-30. BÖLEK, Y., M.N. Nas, and H. Cokkizgin. 2013. Hydropriming and hot water-induced heat shock increase cotton seed germination and seedling emergence at low temperature. Turkish Journal of Agriculture and Forestry 37:300-306. Cantliffe, D.J., J.M. Fischer, and T.A. Nell. 1984. Mechanism of seed priming in circumventing thermodormancy in lettuce. Plant Physiol. 75:290-294. Carrera-Castaño, G., J. Calleja-Cabrera, M. Pernas, L. Gómez, and L. Oñate-Sánchez. 2020. An updated overview on the regulation of seed germination. Plants 9:703. Chin, H. 1990. Storage of recalcitrant seeds: past, present and future. Trop. tree seed Res.:89-92. Chin, H., B. Krishnapillay, and P. Stanwood. 1989. Seed moisture: recalcitrant vs. orthodox seeds. Seed moisture 14:15-22. Clerkx, E.J., H. Blankestijn‐De Vries, G.J. Ruys, S.P. Groot, and M. Koornneef. 2004. Genetic differences in seed longevity of various Arabidopsis mutants. Physiol. plantarum 121:448-461. Cohn, M.A., B. Kucera, and G. Leubner-Metzger. 2005. Plant hormone interactions during seed dormancy release and germination. Seed Sci. Res. 15:281-307. Crane, J., A.L. Miller, J.W. Van Roekel, and C. Walters. 2003. Triacylglycerols determine the unusual storage physiology of Cuphea seed. Planta 217:699-708. Crookston, R.K. and D.S. Hill. 1978. A visual indicator of the physiological maturity of soybean seed. Crop Sci. 18:867-870. Debeaujon, I. and M. Koornneef. 2000. Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiol. 122:415-424. Delouche, J.C. 1980. Environmental effects on seed development and seed quality. HortSci. 15:775-780. Ebert, A. and Y. Huang. 2015. Are Momordica charantia (bitter gourd) seeds truly orthodox. In “seeds for future generations–determinants of longevity: International Society for Seed Science (ISSS) seed longevity workshop; Book of Abstracts”, pp. 58. Elias, S.G. and L.O. Copeland. 2001. Physiological and harvest maturity of canola in relation to seed quality. Agron. J. 93:1054-1058. Ellis, R.H., T. Hong, and E. Roberts. 1990. An intermediate category of seed storage behaviour? I. Coffee. J. Expt. Bot. 41:1167-1174. Endress, P.K. 2011. Angiosperm ovules: diversity, development, evolution. Ann. Bot. 107:1465-1489. F. Fang, E. and T. B. Ng. 2011. Bitter gourd (Momordica charantia) is a cornucopia of health: a review of its credited antidiabetic, anti-hiv, and antitumor properties. Current Mol. Med. 11:417-436. Farooq, M., H. Bramley, J.A. Palta, and K.H.M. Siddique. 2011. Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sci. 30:491-507. Finch‐Savage, W.E. and G. Leubner‐Metzger. 2006. Seed dormancy and the control of germination. New phytologist 171:501-523. Garcia, J. and C.M.M. Coelho. 2021. Accelerated aging predicts the emergence of rice seedlings in the field. Semina: Ciências Agrárias 42:1397-1410. Giuliani, C., C. Tani, and L. Maleci Bini. 2016. Micromorphology and anatomy of fruits and seeds of bitter melon (Momordica charantia L., Cucurbitaceae). Acta Societatis Botanicorum Poloniae 85. Godwin, A., C. McGill, A. Ward, S. Sofkova-Bobcheva, and S. Pieralli. 2023. Phenological phase affects carrot seed production sensitivity to climate change – A panel data analysis. Sci, The Total Environ. 892:164502. Gubler, F., A.A. Millar, and J.V. Jacobsen. 2005. Dormancy release, ABA and pre-harvest sprouting. Current opinion in plant Bio. 8:183-187. Hasan, M.A., J.U. Ahmed, T. Hossain, M.A.K. Mian, and M.M. Haque. 2013. Evaluation of the physiological quality of wheat seed as influenced by high parent plant growth temperature. J. Crop Sci. and Biotechnol. 16:69-74. Hemal Fonseka, H. and R. Fonseka. 2009. Studies on deterioration and germination of bitter gourd seed (Momordica charantia L.) during storage. In “V International Symposium on Seed, Transplant and Stand Establishment of Horticultural Crops 898”, pp. 31-38. Hoang, H.H., B. Sotta, E. Gendreau, C. Bailly, J. Leymarie, and F. Corbineau. 2013. Water content: a key factor of the induction of secondary dormancy in barley grains as related to ABA metabolism. Physiol. plantarum 148:284-296. Hsu, C.C., C.L. Chen, J.J. Chen, and J.M. Sung. 2003. Accelerated aging-enhanced lipid peroxidation in bitter gourd seeds and effects of priming and hot water soaking treatments. Scientia Horti. 98:201-212. Huang, H.Y. and C.H. Hsieh. 2016. Development of bitter gourd industry in Taiwan. J. Taiwan Soc. Hort. Sci. 62:101-108 Ibrahim, E.A. 2016. Seed priming to alleviate salinity stress in germinating seeds. J. Plant Physiol. 192:38-46. Jurado, E. and J. Flores. 2005. Is seed dormancy under environmental control or bound to plant traits? Journal of Vegetation Science 16:559-564. Kapoor, N., A. Arya, M.A. Siddiqui, H. Kumar, and A. Amir. 2011. Physiological and biochemical changes during seed deterioration in aged seeds of rice (Oryza sativa L.). Amer. J. Plant Physiol. 6:28-35. Keigley, P.J. and R.E. Mullen. 1986. Changes in soybean seed quality from high temperature during seed fill and maturation. Crop Sci. Khanna, P., S.C. Jain, A. Panagariya, and V.P. Dixit. 1981. Hypoglycemic activity of polypeptide-p from a plant source. J Nat Prod 44:648-55. Li, R., L. Chen, Y. Wu, R. Zhang, C.C. Baskin, J.M. Baskin, and X. Hu. 2017. Effects of cultivar and maternal environment on seed quality in Vicia sativa. Frontiers in Plant Sci. 8:1411. Lin, R.H., K.Y. Chen, C.L. Chen, J.J. Chen, and J.M. Sung. 2005. Slow post-hydration drying improves initial quality but reduces longevity of primed bitter gourd seeds. Scientia Horti. 106:114-124. Marcos Filho, J. 2015. Seed vigor testing: an overview of the past, present and future perspective. Scientia agricola 72:363-374. Masoumeh Asadi, A., S. Mohammad, P. Ghasem, and D. Beata. 2023. Pumpkin seeds germination and seedling growth under abiotic stress, p. Ch. 6. In: W. Haiping (ed.). Biological and Abiotic Stress in Cucurbitaceae Crops. IntechOpen, Rijeka. Maynard, L. 2007. Cucurbit crop growth and development. In “Indiana CCA Conference Proceedings”. Purdue University West Lafayette, IN, USA. McDonald, M. 1999. Seed deterioration: physiology, repair and assessment. Seed Sci. Technol. 27:177-237. Nguyen, T.-P., P. Keizer, F. van Eeuwijk, S. Smeekens, and L. Bentsink. 2012. Natural variation for seed longevity and seed dormancy are negatively correlated in arabidopsis. Plant Physiol. 160:2083-2092. Ooms, J.J., K.M. Leon-Kloosterziel, D. Bartels, M. Koornneef, and C.M. Karssen. 1993. Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana (a comparative study using abscisic acid-insensitive abi3 mutants). Plant Physiol. 102:1185-1191. Pekrun, C., P.J.W. Lutman, and K. Baeumer. 1997. Induction of secondary dormancy in rape seeds (Brassica napus L.) by prolonged imbibition under conditions of water stress or oxygen deficiency in darkness. European J. Agron. 6:245-255. Penfield, S. 2017. Seed dormancy and germination. Current Biol. 27:R874-R878. Perveen, S., S. Nigar, S. Khalil, and M. Zubair. 2010. Vigor tests used to rank seed lot quality and predict field emergence in wheat. Pakistan J. Bot. 42:3147-3155. Pritchard, H.W. 2004. Classification of seed storage types for ex situ conservation in relation to temperature and moisture. Ex situ plant conservation: supporting species survival in the wild:139-161. Singh, R.P., P.V. Prasad, and K.R. Reddy. 2013. Impacts of changing climate and climate qvariability on seed production and seed industry. Advances in Agron. 118:49-110. Siyal, A.L. 2019. Hybrid seed production its methods & benefits. Sofowora, A. 1993. Medicinal Plants and Traditional Medicine in Africa. Spectrum Books. Solberg, S.Ø., F. Yndgaard, C. Andreasen, R. Von Bothmer, I.G. Loskutov, and Å. Asdal. 2020. Long-term storage and longevity of orthodox seeds: A systematic review. Frontiers in Plant Sci. 11:1007. Sugliani, M., L. Rajjou, E.J. Clerkx, M. Koornneef, and W.J. Soppe. 2009. Natural modifiers of seed longevity in the Arabidopsis mutants abscisic acid insensitive3‐5 (abi3‐5) and leafy cotyledon1‐3 (lec1‐3). New Phytologist 184:898-908. TeKrony, D., D. Egli, J. Balles, T. Pfeiffer, and R. Fellows. 1979. Physiological maturity in soybean 1. Agron. J. 71:771-775. TeKrony, D., D. Egli, and A. Phillips. 1980. Effect of field weathering on the viability and vigor of soybean seed 1. Agron. J. 72:749-753. Totterdel, S. and E. Roberts. 1979. Effects of low temperatures on the loss of innate dormancy and the development of induced dormancy in seeds of Rumex obtusifolius L. and Rumex crispus L. Plant, Cell & Environment 2:131-137. Wang, H., C. Chen, and J. Sung. 2003. Both warm water soaking and matriconditioning treatments enhance anti-oxidation of bitter gourd seeds germinated at sub-optimal temperature. Seed Sci. and Technol. 31:47-56. Wang, Y., Y. Cui, G. Hu, X. Wang, H. Chen, Q. Shi, J. Xiang, Y. Zhang, D. Zhu, and Y. Zhang. 2018. Reduced bioactive gibberellin content in rice seeds under low temperature leads to decreased sugar consumption and low seed germination rates. Plant physiol. and Biochem. 133:1-10. Yeh, G.Y., D.M. Eisenberg, T.J. Kaptchuk, and R.S. Phillips. 2003. Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care 26:1277-94. Yeh, Y., K. Chiu, C. Chen, and J. Sung. 2005. Partial vacuum extends the longevity of primed bitter gourd seeds by enhancing their anti-oxidative activities during storage. Scientia Horti. 104:101-112. Yuan, L. 1994. Increasing yield potential in rice by exploitation of heterosis. Hybrid rice technology: New developments and future prospects:1-6. Zhang, J., S. Xiang, and H. Wan. 2021. Negative association between seed dormancy and seed longevity in bread wheat. Amer. J. Plant Sci. 12:347-365. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92739 | - |
| dc.description.abstract | 苦瓜是台灣重要的蔬菜作物,有良好的營養和藥用價值,台灣本土即可進行採種且有許多優良之F1品種,但苦瓜種子的儲藏性不穩定,有熱季種子儲藏壽命較短的現象。由於全球暖化的影響,持續上升的溫度可能使種子儲藏壽命進一步下降,對產業造成威脅,然而,對苦瓜種子活勢以及儲藏方面的研究有限,其種子儲藏特性也未有定論。本研究目的在建立熱季苦瓜種子的活勢數據,比較熱季和涼季苦瓜成熟種子的品質,以及探討次級休眠誘導之條件和對種子品質的影響。熱季苦瓜 Ⅴ 級種子已達生理成熟,其發芽百分比達到最高,雖然活勢較冷季種子差但已具乾旱耐受性,果實開始轉色為 Ⅴ 級種子開始出現的時機,果實轉色完全時 V 級種子比例達到高峰,可以做為熱季採種指標。熱季苦瓜果實生長速度快,果實由授粉至爆裂的時間較短,種子建立活勢的時間也較短,雖不影響30℃的發芽表現,但在23℃, 約有50%種子的胚根無法突出;老化試驗結果顯示熱季種子活勢較差且容易劣變,顯示儲藏性可能較低。利用加速老化配合胚根突出法,可以有效檢驗苦瓜種子活勢,建議的老化條件為41℃處理3日,胚根突出條件則為23℃處理90小時。苦瓜種子屬於正儲型種子,苦瓜‘月華’種子的次級休眠源自種子之內生性因素,可透過低於-10℃的低溫進行誘導,並且可以40-50℃的處理打破,建議的誘導和打破條件為-20℃處理1日,以及46℃處理10分鐘,次級休眠的誘導和打破並不會對苦瓜種子活勢造成顯著的負面影響,反而可以提升發芽整齊度,若是處在休眠狀態的種子具有較佳的耐儲藏性,則有望解決熱季苦瓜種子儲藏性差的問題、以及未來苦瓜種子產業可能面臨之威脅。 | zh_TW |
| dc.description.abstract | Bitter gourd is an important vegetable crop in Taiwan, with good nutritional and medicinal value. Taiwan has many excellent F1 varieties that can be locally grown, however, in the context of business related to bitter gourd varieties, the storage stability of bitter gourd seeds often exhibits seasonally unstable characteristics, especially hot season seeds showing a much shorter storage life. Due to the ongoing effects of global warming, the gradually increasing temperature might further decrease the storage time of bitter gourd seeds, posing a future threat to the bitter gourd seed industry. However, there is limited research on seed vigor and storage-related aspects, and the storage characteristics of bitter gourd seeds remain inconclusive. This experiment aims to build seed vigor data along the developing process of hot season gourds, compare the seed vigor of the mature seeds of hot and cold season gourds by accelerated aging method and investigate the conditions for inducing secondary dormancy and their effects on seed quality. Level V seeds of hot season bitter gourds have reached physiological maturity, with the highest germination percentage. Although their vigor is lower than that of cool season seeds, they already exhibit desiccation tolerance. The peak proportion of level V seeds coincides with the complete color change of the fruit, indicating that this can be used as an indicator for seed collection in hot season. Since bitter gourd fruits grow faster in hot season, the time for establishing seed vigor is shorter, although it didn’t affect germination performance at 30℃, 50% of the seeds were not able to protrude their radical root at 23℃. Accelerated aging tests show that hot season seeds have lower vigor and are more prone to deterioration, which affects their storage. In addition, using accelerated aging combined with the radicle emergence test can effectively test the vigor of bitter gourd seeds, the recommended condition is 41℃ for 3 days for accelerated aging and 23℃ for 90 hours for radical emergence test. Bitter gourds seeds are orthodox seeds. The secondary dormancy of bitter gourd 'Yue hua' seeds originates from endogenous factors and can be induced by temperature lower than -10°C, which can then be broken by treatments at 40-50°C, the recommended condition for secondary formancy induction and breaking is -20°C 1 day and 46°C 10 min, respectively. The sequence of induction and broken of secondary dormancy in bitter gourd seeds do not significantly negatively affect the vigor of bitter melon seeds; instead, they can improve germination uniformity. If dormancy seeds have better storability, it may help solve the problem of poor longevity of hot season bitter gourd seeds and the potential threats to the bitter gourd seed industry in the future. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-18T16:06:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-06-18T16:06:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii 表次 v 圖次 v 前言 1 第一章、前人研究 2 第一節、苦瓜介紹 2 第二節、種子結構和發育 3 第三節、種子發芽階段 5 第四節、種子休眠性 7 第五節、種子儲藏 8 第六節、種子活勢檢測 10 第二章、材料方法 13 第一節、苦瓜熱季及涼季種子採種 13 第二節、熱季種子發育成熟度試驗 14 第三節、種子發芽檢測 15 第四節、加速老化試驗 15 第五節、熱季苦瓜種子次級休眠誘導之評估 16 第六節、統計分析 16 第三章、結果 18 第一節、夏季苦瓜種子發育和發芽特徵 18 第二節、加速老化對熱及涼季種子發芽表現的影響 19 第三節、熱季苦瓜種子次級休眠誘導之評估 21 第四章、討論 22 第一節、熱季苦瓜種子發育和發芽特徵 22 第二節、涼季及熱季種子活勢的差異 24 第三節、苦瓜種子儲藏性及初級休眠之探討 26 第四節、熱季苦瓜種子次級休眠誘導之評估 27 第五章、結論 49 參考文獻 51 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 生理成熟 | zh_TW |
| dc.subject | 種子活勢檢測 | zh_TW |
| dc.subject | 全球暖化 | zh_TW |
| dc.subject | 種子儲藏特性 | zh_TW |
| dc.subject | 次級休眠 | zh_TW |
| dc.subject | 採收成熟 | zh_TW |
| dc.subject | global warming | en |
| dc.subject | Seed vigor test | en |
| dc.subject | physiological mature | en |
| dc.subject | seed storage characteristic | en |
| dc.subject | harvest mature | en |
| dc.title | 採收季節及次級休眠誘導對苦瓜種子活勢之影響 | zh_TW |
| dc.title | The Impact of Harvest Season and Secondary Dormancy Induction on the Seed Vigor of Bitter Gourd | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 洪進雄;陳葦玲 | zh_TW |
| dc.contributor.oralexamcommittee | Chin-Hsiung Hung;Wei-Ling Chen | en |
| dc.subject.keyword | 種子活勢檢測,生理成熟,採收成熟,次級休眠,種子儲藏特性,全球暖化, | zh_TW |
| dc.subject.keyword | Seed vigor test,physiological mature,harvest mature,seed storage characteristic,global warming, | en |
| dc.relation.page | 56 | - |
| dc.identifier.doi | 10.6342/NTU202401205 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-06-17 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 園藝暨景觀學系 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 2.48 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
