請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92732完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 柯柏如 | zh_TW |
| dc.contributor.advisor | Po-Ju Ke | en |
| dc.contributor.author | 孫誼 | zh_TW |
| dc.contributor.author | Yi Sun | en |
| dc.date.accessioned | 2024-06-17T16:08:01Z | - |
| dc.date.available | 2024-06-18 | - |
| dc.date.copyright | 2024-06-17 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-06-12 | - |
| dc.identifier.citation | Bates, H.W. (1862). Contributions to an insect fauna of the amazon valley. lepidoptera: Heliconidae. Transactions of the Linnean Society of London, 23, 495–566.
Brower, L.P. & Moffitt, C.M. (1974). Palatability dynamics of cardenolides in the monarch butterfly. Nature, 249, 280–283. Cabras, A. & Medina, M.N. (2020). New species and new distributional records of doliops waterhouse, 1841 (coleoptera: Cerambycidae: Lamiinae) with notes on ecology and mimicry from mindanao island, philippines. Baltic Journal of Coleopterology, 19, 179–186. Charnov, E. (1973). Optimal Foraging: Some Theoretical Explorations. University of Washington. Charnov, E.L. (1976). Optimal foraging: attack strategy of a mantid. The American Naturalist, 110, 141–151. Chittka, L. & Osorio, D. (2007). Cognitive dimensions of predator responses to imperfect mimicry. PLOS Biology, 5, 1–5. Cuthill, I.C. & Bennett, A.T.D. (1993). Mimicry and the eye of the beholder. Proceedings of the Royal Society of London. Series B: Biological Sciences, 253, 203–204. Darst, C.R. (2006). Predator learning, experimental psychology and novel predictions for mimicry dynamics. Animal Behaviour, 71, 743–748. Dittrich, W., Gilbert, F., Green, P., Mcgregor, P. & Grewcock, D. (1993). Imperfect mimicry: A pigeon’s perspective. Proceedings: Biological Sciences, 251, 195–200. Edmunds, M. (2000). Why are there good and poor mimics? Biological Journal of the Linnean Society, 70, 459–466. Eliason, C.M., Andersen, M.J. & Hackett, S.J. (2019). Using Historical Biogeography Models to Study Color Pattern Evolution. Systematic Biology, 68, 755–766. Franks, D.W., Ruxton, G.D. & Sherratt, T.N. (2009). Warning signals evolve to disengage batesian mimics. Evolution, 63, 256–267. Getty, T. (1985). Discriminability and the sigmoid functional response: how optimal foragers could stabilize model-mimic complexes. The American Naturalist, 125, 239–256. Holen, O. & Johnstone, R. (2004). The evolution of mimicry under constraints. The American Naturalist, 164, 598–613. PMID: 15540150. Holling, C.S. (1965). The functional response of predators to prey density and its role in mimicry and population regulation. The Memoirs of the Entomological Society of Canada, 97, 5–60. Johnstone, R.A. (2002). The evolution of inaccurate mimics. Nature, 418, 524–526. Karline Soetaert, Thomas Petzoldt & R. Woodrow Setzer (2010). Solving differential equations in R: Package deSolve. Journal of Statistical Software, 33, 1–25. Karlíková, Z., Veselý, P., Beránková, J. & Fuchs, R. (2016). Low ability of great tits to discriminate similarly inconspicuous edible and inedible prey. Ethology, 122, 180–191. Kelly, M.B., McLean, D.J., Wild, Z.K. & Herberstein, M.E. (2021). Measuring mimicry: methods for quantifying visual similarity. Animal Behaviour, 178, 115–126. Kikuchi, D.W., Barfield, M., Herberstein, M.E., Mappes, J. & Holt, R.D. (2022). The effect of predator population dynamics on batesian mimicry complexes. The American Naturalist, 199, 406–419. Kikuchi, D.W., Pfennig, D.W. & Dykhuizen, H.E.D. (2013). Imperfect mimicry and the limits of natural selection. The Quarterly Review of Biology, 88, 297–315. Kumazawa, F., Asami, T., Hayashi, T. & Yoshimura, J. (2006). Population dynamics of batesian mimicry under interspecific competition. Evolutionary Ecology Research, 8, 591–604. Maia, R., Gruson, H., Endler, J.A. & White, T.E. (2019). pavo 2: New tools for the spectral and spatial analysis of colour in r. Methods in Ecology and Evolution, 10, 1097–1107. McGuire, L., Van Gossum, H., Beirinckx, K. & Sherratt, T.N. (2006). An empirical test of signal detection theory as it applies to batesian mimicry. Behavioural Processes, 73, 299–307. McLean, D.J., Cassis, G., Kikuchi, D.W., Giribet, G. & Herberstein, M.E. (2019). In-sincere flattery? understanding the evolution of imperfect deceptive mimicry. The Quarterly Review of Biology, 94, 395–415. Motyka, M., Bocek, M., Kusy, D. & Bocak, L. (2020). Interactions in multi-pattern müllerian communities support origins of new patterns, false structures, imperfect re-semblance and mimetic sexual dimorphism. Scientific Reports, 10, 11193. Müller, F. (1879). Ituna and thyridia; a remarkable case of mimicry in butterflies. Trans-actionr of the Entomological Society of London, XX-XXIX. Nelson, D., Crossland, M. & Shine, R. (2010). Foraging responses of predators to novel toxic prey: Effects of predator learning and relative prey abundance. Oikos, 120, 152–158. Nur, U. (1970). Evolutionary rates of models and mimics in batesian mimicry. The American Naturalist, 104, 477–486. Oaten, A., Pearce, C. & Smyth, M. (1975). Batesian mimicry and signal detection theory. Bulletin of Mathematical Biology, 37, 367–387. Pekár, S., Jarab, M., Fromhage, L. & Herberstein, M.E. (2011). Is the evolution of inaccurate mimicry a result of selection by a suite of predators? a case study using myrmecomorphic spiders. The American Naturalist, 178, 124–134. PMID: 21670583. Penney, H.D., Hassall, C., Skevington, J.H., Abbott, K.R. & Sherratt, T.N. (2012). A comparative analysis of the evolution of imperfect mimicry. Nature, 483, 461–464. Pfennig, D.W. & Mullen, S.P. (2010). Mimics without models: causes and consequences of allopatry in batesian mimicry complexes. Proceedings of the Royal Society B: Biological Sciences, 277, 2577–2585. Quicke, D.L. (2017). Mimicry, crypsis, masquerade and other adaptive resemblances. John Wiley & Sons. R Core Team (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Rowell-Rahier, M., Pasteels, J., Alonso-Media, A. & Brower, L. (1995). Relative unpalatability of leaf beetles with either biosynthesized or sequestered chemical defence. Animal Behaviour, 49, 709–714. Ruxton, G.D., Sherratt, T.N. & Speed, M.P. (2004). Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry. Oxford University Press. Sherratt, T.N. (2002). The evolution of imperfect mimicry. Behavioral Ecology, 13, 821–826. Sherratt, T.N. & Peet-Paré, C.A. (2017). The perfection of mimicry: an information approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160340. Stephens, D.W. & Krebs, J.R. (1986). Foraging Theory. vol. 1. Princeton University Press. Thurman, T.J. & Seymoure, B.M. (2016). A bird’s eye view of two mimetic tropical butterflies: coloration matches predator’s sensitivity. Journal of Zoology, 298, 159–168. Tomizuka, H. & Tachiki, Y. (2024). The eco-evolutionary dynamics of batesian mimicry. Journal of Theoretical Biology, 577, 111683. Wilson, J.S., Pan, A.D., Alvarez, S.I. & Carril, O.M. (2022). Assessing müllerian mimicry in north american bumble bees using human perception. Scientific Reports, 12, 17604. Wilson, J.S., Williams, K.A., Forister, M.L., von Dohlen, C.D. & Pitts, J.P. (2012). Repeated evolution in overlapping mimicry rings among north american velvet ants. Nature Communications, 3, 1272. Yamauchi, A. (1993). A population dynamic model of batesian mimicry. Researches on Population Ecology, 35, 295–315. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92732 | - |
| dc.description.abstract | 擬態是一種反捕食策略,由擬態者擬態具防禦的被擬態者,以欺騙捕食者。儘管過去理論預測完美擬態,但在自然界中不完美的擬態(imperfect mimicry)仍普遍存在。本理論研究探討單一擬態系統和多擬態系統的族群動態與穩定性,並著重研究捕食者的認知能力以及獵物的防禦程度對系統動態的影響。本研究結合最佳覓食理論、信號檢測理論和族群動態模型,發現當擬態者與被擬態者的相似度為中等程度時系統動態最為穩定,且擬態者的族群量亦達到最高。我們發現當捕食者能根據擬態者和被擬態者的相對族群量而調整其認知能力時,上述不完美擬態的穩定效應仍然存在。另外,我們也發現即使被擬態者擁有更好的防禦,不完美擬態也仍然是有益的。當我們將系統擴展至同時包含貝氏和穆氏擬態的多擬態系統時,不完美擬態提供的效果仍然是有益的。貝氏擬態者和穆氏擬態者在不同相似程度下提供多擬態系統不同程度的保護,其中貝氏擬態僅在中等相似程度提供保護,而穆氏擬態則在中等相似度至高相似度時提供程度一致的保護。這些結果即使當被擬態者或穆氏擬態者具有更多防禦時仍然保持不變。整體來說,本研究顯示在各種捕食者的識別能力、被擬態者的防禦能力和多物種的擬態系統中,不完美擬態皆可使擬態者在自然系統中穩定存在。 | zh_TW |
| dc.description.abstract | Mimicry is a widespread anti-predator strategy where a prey species (the mimic) resembles an unprofitable species (the model) to deceive the predator. Despite past theoretical expectations for perfect mimicry, imperfect resemblances are common in nature. Here, we study the population dynamics and stability of both single- and multi-mimicry systems, with a particular focus on the influence of different predator recognition abilities and prey defenses. With a theoretical framework integrating optimal foraging theory, signal detection theory, and population dynamical systems, we demonstrate that intermediate mimic--model similarity stabilizes dynamics and promotes mimic abundance, thereby challenging past expectations for perfect mimicry. This stabilizing effect persists even when predators adjust recognition dynamically based on mimic and model abundance ratio; imperfect mimicry also remains beneficial even when the model is equipped with more defense. Furthermore, the beneficial effect of imperfect mimicry persisted when we extended the framework to consider a multi-mimicry system with both Batesian mimic and Müllerian mimic. Batesian and Müllerian mimics offer different levels of protection to the multi-mimicry system under different degrees of resemblance. Specifically, Batesian mimics provide protection under intermediate similarity, while Müllerian mimics offer equal strength of protection with under either intermediate or high similarity. All aforementioned patterns hold even when the model or Müllerian mimic possesses greater defense. Overall, our study offers novel insights into the prevalence of imperfect mimicry in nature --- it can be an ecologically stable anti-predator strategy across a wide range of predator recognition abilities, prey defenses, and mimicry systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-17T16:08:01Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-06-17T16:08:01Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements ii 摘要 iii Abstract iv Contents vi List of Figures viii 1. Introduction 1 2. Method 5 2.1 Optimal foraging, signal detection theory, and mimicry dynamic system 5 2.2 Predator recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Multi-mimicry complex dynamic system . . . . . . . . . . . . . . . 10 2.4 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . 12 3. Results 14 3.1 Dynamics of single mimicry system with predator with fixed strategy 14 3.2 Dynamics of single mimicry system with predator with adjustable strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Relationship between similarity and model value in single mimicry system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4 Dynamics of multi-mimicry system . . . . . . . . . . . . . . . . . . 20 3.5 Relationship between similarity and prey items value in multi-mimicry system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4. Discussion 29 References 33 Appendix A — Analytical criteria for diet shifting in optimal foraging theory 38 Appendix B — Artifact in the multi-mimicry system when k2 is small 41 Appendix C — Supplementary figures 43 | - |
| dc.language.iso | en | - |
| dc.subject | 信號檢測理論 | zh_TW |
| dc.subject | 動態系統 | zh_TW |
| dc.subject | 最佳覓食理論 | zh_TW |
| dc.subject | 多擬態系統 | zh_TW |
| dc.subject | 穆氏擬態 | zh_TW |
| dc.subject | 貝氏擬態 | zh_TW |
| dc.subject | 不完美擬態 | zh_TW |
| dc.subject | dynamics system | en |
| dc.subject | Batesian Mimicry | en |
| dc.subject | Müllerian mimicry | en |
| dc.subject | multi-mimicry system | en |
| dc.subject | imperfect mimicry | en |
| dc.subject | optimal foraging theory | en |
| dc.subject | signal detection theory | en |
| dc.title | 掠食者對獵物相似度的認知形塑擬態系統的動態 | zh_TW |
| dc.title | Predator response to perceived prey similarity shapes the dynamics of mimicry systems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 何熙誠;郭祺筠;張俊偉;曾惠芸 | zh_TW |
| dc.contributor.oralexamcommittee | Hsi-Cheng Ho;Chi-Yun Kuo;Chun-Wei Chang;Hui-Yun Tseng | en |
| dc.subject.keyword | 貝氏擬態,穆氏擬態,多擬態系統,不完美擬態,動態系統,最佳覓食理論,信號檢測理論, | zh_TW |
| dc.subject.keyword | Batesian Mimicry,Müllerian mimicry,multi-mimicry system,imperfect mimicry,dynamics system,optimal foraging theory,signal detection theory, | en |
| dc.relation.page | 51 | - |
| dc.identifier.doi | 10.6342/NTU202401122 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-06-12 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | - |
| dc.date.embargo-lift | 2025-12-31 | - |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 15.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
