請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92727完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李泰成 | zh_TW |
| dc.contributor.advisor | Tai-Cheng Lee | en |
| dc.contributor.author | 楊育泓 | zh_TW |
| dc.contributor.author | Yu-Hong Yang | en |
| dc.date.accessioned | 2024-06-17T16:06:13Z | - |
| dc.date.available | 2024-06-18 | - |
| dc.date.copyright | 2024-06-17 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-06-14 | - |
| dc.identifier.citation | [1] S.M. Lee, J.H. Kim, J. Kim, Y. Kim, H. Lee, J.Y. Sim, and H.J. Park, “A 27% Reduction in Transceiver Power for Single-ended Point-to-point DRAM Interface with the Termination Resistance of 4×Z0 at Both TX and RX,” in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 308–309,2013.
[2] J.R. Schrader, E. Klumperink, J. Visschers, and B. Nauta, “Pulse-Width Modulation Pre-Emphasis Applied in a Wireline Transmitter, Achieving 33 dB Loss Compensation at 5Gb/s in 0.13/spl mu/m CMOS,” IEEE Journal of Solid-State Circuits, vol. 41, no. 4, pp. 990–999, 2006. [3] J. Lee, “A 20Gb/s Adaptive Equalizer in 0.13μmCMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 41, no. 9, pp. 2058–2066, 2006. [4] S.M. Lee, I.M. Yi, H.K. Jung, H. Lee, Y.J. Kim, Y.S. Kim, B. Kim, J.Y. Sim, and H.J. Park, “An 80 mV Swing SingleEnded Duobinary Transceiver With a TIA RX Termination for the PointtoPoint DRAM Interface,” IEEE Journal of Solid-State Circuits, vol. 49, no.11, pp. 2618–2630, 2014. [5] K. Sohn, T. Na, I. Song, Y. Shim, W. Bae, S. Kang, D. Lee, H. Jung, H. Jeoung, K.W. Lee, J. Park, J. Lee, B. Lee, I. Jun, J. Park, J. Park, H. Choi, S. Kim, H. Chung, Y. Choi, D.H. Jung, J. S. Choi, B. Moon, J.H. Choi, B. Kim, S.J. Jang, J. S. Choi, and K. S. Oh, “A 1.2V 30nm 3.2Gb/s/pin 4Gb DDR4 SDRAM With DualError Detection and PVTTolerant DataFetch Scheme,” in 2012 IEEE International Solid-State Circuits Conference, pp. 38–40, 2012. [6] Y.C. Bae, J.Y. Park, S. J. Rhee, S. B. Ko, Y. Jeong, K.S. Noh, Y. Son, J. Youn, Y. Chu, H. Cho, M. Kim, D. Yim, H.C. Kim, S.H. Jung, H.I. Choi, S. Yim, J.B. Lee, J. S. Choi, and K. Oh, “A 1.2V 30nm 1.6Gb/s/pin 4Gb LPDDR3 SDRAM With Input Skew Calibration and Enhanced Control Scheme,” in 2012 IEEE International Solid-State Circuits Conference, pp. 44–46, 2012. [7] C. Park, H. Chung, Y.S. Lee, J. Kim, J. Lee, M.S. Chae, D.H. Jung, S.H.Choi, S. Young Seo, T.S. Park, J.H. Shin, J.H. Cho, S. Lee, K.W. Song, K.H. Kim, J.B. Lee, C. Kim, and S.I. Cho, “A 512mb DDR3 SDRAM Prototype With C/sub IO/Minimization and SelfCalibration Techniques,” IEEE Journal of Solid-State Circuits, vol. 41, no. 4, pp. 831–838, 2006. [8] K. Kaviani, M. Bucher, B. Su, B. Daly, B. Stonecypher, W. Dettloff, T. Stone, K. Prabhu, P. K. Venkatesan, F. Heaton, R. Kollipara, Y. Lu, C. J. Madden, J. Eble, L. Luo, and N. Nguyen, “A 6.4Gb/s Near-Ground Single-Ended Transceiver for Dual-Rank DIMM Memory Interface Systems,” in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 306–307, 2013. [9] A. Manian and B. Razavi, “A 40Gb/s 14mW CMOS Wireline Receiver,” IEEE Journal of Solid-State Circuits, vol. 52, no. 9, pp. 2407–2421, 2017. [10] A. Cevrero, I. Ozkaya, P. A. Francese, C. Menolfi, T. Morf, M. Brandli, D. Kuchta, L. Kull, J. Proesel, M. Kossel, D. Luu, B. Lee, F. Doany, M. Meghelli, Y. Leblebici, and T. Toifl, “29.1 A 64Gb/s 1.4pJ/b NRZ Optical Receiver Data-Path in 14nm CMOS FinFET,” in 2017 IEEE International Solid-State Circuits Conference(ISSCC), pp. 482–483, 2017. [11] Y.S. Lee, W.H. Ho, and W.Z. Chen, “A 25Gb/s, 2.1pJ/bit, Fully Integrated Optical Receiver With a Baud Rate Clock and Data Recovery,” IEEE Journal of Solid-State Circuits, vol. 54, no. 8, pp. 2243–2254, 2019. [12] D. Kim, W.S. Choi, A. Elkholy, J. Kenney, and P. K. Hanumolu, “A 15Gb/s Sub-Baud-Rate Digital CDR,” IEEE Journal of Solid-State Circuits, vol. 54, no. 3, pp. 685–695, 2019. [13] M.C. Choi, H.G. Ko, J. Oh, H.Y. Joo, K. Lee, and D.K. Jeong, “A 0.1pJ/b/dB 28Gb/s Maximum-Eye Tracking, Weight-Adjusting MM CDR and Adaptive DFE With Single Shared Error Sampler,” in 2020 IEEE Symposium on VLSI Circuits, pp. 1–2, 2020. [14] H. Li, J. Sharma, C.M. Hsu, G. Balamurugan, and J. Jaussi, “11.6 A 100Gb/s 8.3dBm Sensitivity PAM4 Optical Receiver with Integrated TIA, FFE and Direct-Feedback DFE in 28nm CMOS,” in 2021 IEEE International Solid-State Circuits Conference (ISSCC), vol. 64, pp. 190–192, 2021. [15] C. F. Poon, W. Zhang, J. Cho, S. Ma, Y. Wang, Y. Cao, A. Laraba, E. Ho, W. Lin, D. Z. Wu, K. H. Tan, P. Upadhyaya, and Y. Frans, “A 1.24pJ/b 112Gb/s (870 Gb/s/Mm) Transceiver for In-Package Links in 7nm FinFET,” IEEE Journal of Solid-State Circuits, vol. 57, no. 4, pp. 1199–1210, 2022. [16] K.L. J. Wong, A. Rylyakov, and C.K. K. Yang, “A 5mW 6Gb/s Quarter-Rate Sampling Receiver With a 2-Tap DFE Using Soft Decisions,” IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp. 881–888, 2007. [17] A. Agrawal, J. F. Bulzacchelli, T. O. Dickson, Y. Liu, J. A. Tierno, and D. J. Friedman, “A 19Gb/s Serial Link Receiver With Both 4-Tap FFE and 5Tap DFE Functions in 45nm SOI CMOS,” IEEE Journal of SolidState Circuits, vol. 47, no. 12, pp. 3220–3231, 2012. [18] K. Park, M. Shim, H.G. Ko, and D.K. Jeong, “6.5 A 6.4-to-32Gb/s 0.96pJ/b Referenceless CDR Employing ML-Inspired Stochastic Phase-Frequency Detection Technique in 40nm CMOS,” in 2020 IEEE International Solid-State Circuits Conference (ISSCC), pp. 124–126, 2020. [19] S. Shahramian, B. Dehlaghi, J. Liang, R. Bespalko, D. Dunwell, J. Bailey, B. Wang, A. SharifBakhtiar, M. O’Farrell, K. Tang, A. C. Carusone, D. Cassan, and D. Tonietto, “30.5 A 1.41pJ/b 56Gb/s PAM4 Wireline Receiver Employing Enhanced Pattern Utilization CDR and Genetic Adaptation Algorithms in 7nm CMOS,” in 2019 IEEE International Solid-State Circuits Conference (ISSCC), pp. 482–484, 2019. [20] A. Atharav and B. Razavi, “11.7 A 56Gb/s 50mW NRZ Receiver in 28nm CMOS,” in 2021 IEEE International Solid-State Circuits Conference (ISSCC), vol. 64, pp. 192–194, 2021. [21] T. O. Dickson, J. F. Bulzacchelli, and D. J. Friedman, “A 12Gb/s 11mW Half-Rate Sampled 5-Tap Decision Feedback Equalizer With Current-Integrating Summers in 45nm SOI CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 44, no. 4, pp. 1298–1305, 2009. [22] T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, A. Prati, D. Gardellini, M. Brändli, M. Kossel, P. Buchmann, P. A. Francese, and T. Morf, “A 2.6mW/Gbps 12.5Gbps RX With 8-tap Switched-Cap DFE in 32nm CMOS,” in 2011 Symposium on VLSI Circuits Digest of Technical Papers, pp. 210–211, 2011. [23] J. Han, Y. Lu, N. Sutardja, K. Jung, and E. Alon, “A 60Gb/s 173mW Receiver Frontend in 65nm CMOS Technology,” in 2015 Symposium on VLSI Circuits (VLSI Circuits), pp. C230–C231, 2015. [24] J. Han, N. Sutardja, Y. Lu, and E. Alon, “Design Techniques for a 60Gb/s 288mW NRZ Transceiver With Adaptive Equalization and Baud-Rate Clock and Data Recovery in 65nm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 52, no. 12, pp. 3474–3485, 2017. [25] J. Poulton, R. Palmer, A. M. Fuller, T. Greer, J. Eyles, W. J. Dally, and M. Horowitz, “A 14mW 6.25Gb/s Transceiver in 90nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 2745–2757, 2007. [26] M. Bucher, R. T. Kollipara, B. Su, L. Gopalakrishnan, K. Prabhu, P. K. Venkatesan, K. Kaviani, B. Daly, B. W. F. Stonecypher, W. Dettloff, T. Stone, F. Heaton, Y. Lu, C. Madden, S. Bangalore, J. C. Eble, N. M. Nguyen, and L. Luo, “A 6.4Gb/s Near-Ground Single-Ended Transceiver for Dual-Rank DIMM Memory Interface Systems,” IEEE Journal of SolidState Circuits, vol. 49, no. 1, pp. 127–139, 2014. [27] D. Kim, M. G. Ahmed, W.S. Choi, A. Elkholy, and P. K. Hanumolu, “A 12Gb/s 10ns Turn-On Time Rapid ON/OFF Baud-Rate DFE Receiver in 65nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 55, no. 8, pp. 2196–2205, 2020. [28] B. Razavi, “Design of CMOS Phase-Locked Loops,” in Cambridge, pp. 428–452, 2020. [29] K. Mueller and M. Muller, “Timing Recovery in Digital Synchronous Data Receivers,” IEEE Transactions on Communications, vol. 24, no. 5, pp. 516–531, 1976. [30] W. Rahman, D. Yoo, J. Liang, A. Sheikholeslami, H. Tamura, T. Shibasaki, and H. Yamaguchi, “A 22.5-to-32Gb/s 3.2pJ/b Referenceless Baud-Rate Digital CDR With DFE and CTLE in 28nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 52, no. 12, pp. 3517–3531, 2017. [31] R. Yousry, E. Chen, Y.M. Ying, M. Abdullatif, M. Elbadry, A. ElShater, T.B. Liu, J. Lee, D. Ramachandran, K. Wang, C.H. Weng, M.L. Wu, and T. Ali, “11.1 A 1.7pJ/b 112Gb/s XSR Transceiver for Intra-Package Communication in 7nm FinFET Technology,” in 2021 IEEE International Solid-State Circuits Conference (ISSCC), vol. 64, pp. 180–182, 2021. [32] G. Hou and B. Razavi, “A 56Gb/s 8mW PAM4 CDR/DMUX With High Jitter Tolerance,” IEEE Journal of Solid-State Circuits, vol. 57, no. 9, pp. 2856–2867, 2022. [33] G. Papotto, F. Carrara, and G. Palmisano, “A 90nm CMOS Threshold-Compensated RF Energy Harvester,” IEEE Journal of Solid-State Circuits, vol. 46, no. 9, pp. 1985–1997, 2011. [34] M. Stoopman, S. Keyrouz, H. J. Visser, K. Philips, and W. A. Serdijn, “Co-Design of a CMOS Rectifier and Small Loop Antenna for Highly Sensitive RF Energy Harvesters,” IEEE Journal of Solid-State Circuits, vol. 49, no. 3, pp. 622–634, 2014. [35] S. Parikh, T. Kao, Y. Hidaka, J. Jiang, A. Toda, S. Mcleod, W. Walker, Y. Koyanagi, T. Shibuya, and J. Yamada, “A 32-Gb/s Wireline Receiver With a Low-Frequency Equalizer, CTLE and 2-tap DFE in 28nm CMOS,” in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 28–29, 2013. [36] J. E. Proesel and T. O. Dickson, “A 20-Gb/s, 0.66pJ/bit Serial Receiver with 2-Stage Continuous-Time Linear Equalizer and 1-Tap Decision Feedback Equalizer in 45nm SOI CMOS,” in 2011 Symposium on VLSI Circuits Digest of Technical Papers, pp. 206–207, 2011. [37] T. Toifl, M. Ruegg, R. Inti, C. Menolfi, M. Brändli, M. Kossel, P. Buchmann, P. A. Francese, and T. Morf, “A 3.1-mW/Gbps 30-Gbps Quarter-Rate Triple-Speculation 15-tap SC-DFE RX Data Path in 32nm CMOS,” in 2012 Symposium on VLSI Circuits (VLSIC), pp. 102–103, 2012. [38] T. Shibasaki, W. Chaivipas, Y. Chen, Y. Doi, T. Hamada, H. Takauchi, T. Mori, Y. Koyanagi, and H. Tamura, “A 56-Gb/s Receiver Front-End With a CTLE and 1-Tap DFE in 20nm CMOS,” in 2014 Symposium on VLSI Circuits Digest of Technical Papers, pp. 1–2, 2014. [39] M. Park, J. Bulzacchelli, M. Beakes, and D. Friedman, “A 7-Gb/s 9.3mW 2-Tap Current-Integrating DFE Receiver,” in 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, pp. 230–599, 2007. [40] C. Thakkar, N. Narevsky, C. D. Hull, and E. Alon, “Design Techniques for a Mixed-Signal I/Q 32-Coefficient Rx-Feedforward Equalizer, 100-Coefficient Decision Feedback Equalizer in an 8 Gb/s 60 GHz 65 nm LP CMOS Receiver,” IEEE Journal of Solid-State Circuits, vol. 49, no. 11, pp. 2588–2607, 2014. [41] H. Li, J. Sharma, C.M. Hsu, G. Balamurugan, and J. Jaussi, “11.6 A 100-Gb/s 8.3-dBm Sensitivity PAM4 Optical Receiver with Integrated TIA, FFE and Direct-Feedback DFE in 28nm CMOS,” in 2021 IEEE International Solid-State Circuits Conference (ISSCC), vol. 64, pp. 190–192, 2021. [42] J. F. Bulzacchelli, C. Menolfi, T. J. Beukema, D. W. Storaska, J. Hertle, D. R. Hanson, P.H. Hsieh, S. V. Rylov, D. Furrer, D. Gardellini, A. Prati, T. Morf, V. Sharma, R. Kelkar, H. A. Ainspan, W. R. Kelly, L. R. Chieco, G. A. Ritter, J. A. Sorice, J. D. Garlett, R. Callan, M. Brandli, P. Buchmann, M. Kossel, T. Toifl, and D. J. Friedman, “A 28-Gb/s 4-Tap FFE/15Tap DFE Serial Link Transceiver in 32nm SOI CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 47, no. 12, pp. 3232–3248, 2012. [43] D. Yoo, M. Bagherbeik, W. Rahman, A. Sheikholeslami, H. Tamura, and T. Shibasaki, “6.8 A 36Gb/s Adaptive Baud-Rate CDR With CTLE and 1-Tap DFE in 28nm CMOS,” in 2019 IEEE International Solid-State Circuits Conference (ISSCC), pp. 126–128, 2019. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92727 | - |
| dc.description.abstract | 大數據時代,各種數據交換及資料傳遞的有線傳輸應用與需求大幅提高,進而相繼發展出高速、多路傳輸的有線傳輸技術。基於擴展有線通訊系統頻寬的強勁趨勢,高性能的收發器於功率消耗上勢必大幅提升,然而提供的能量總量必然是有限額度,因此高性能與高效能需要同時滿足。為了因應這些趨勢與挑戰,本文首先提出了基於有線傳輸的能量獵取技術,採用三相位旋轉及五倍時間相交之切換式電容電路嵌入於通訊電路前端介面,藉由切換式電容模仿50 歐姆,滿足訊號完整度,同時獵取有線傳輸的訊號能量達300微瓦,此提出的獵能電路採用台積電四零奈米製程。接著,本論文分析現有文獻,歸納出有線傳輸的時脈分配電路於功率消耗上有高度佔比,在提出的接收機中,採用次鮑時脈架構達到降低電路功耗,並搭載連續時間線性等化器、一階決策回授等化器,以及時脈資料回復電路,達到高性能、高效能之有線傳輸接收機,此提出的有線傳輸接收機採用台積電二八奈米製程,總功率為18 毫瓦。
總體而言,此論文強調了現代有線通訊系統中的功率效率挑戰,並提出了可行的技術解決方案,在保持高性能標準的同時優化能耗,從而促進更可持續和更高效的有線通信技術。 | zh_TW |
| dc.description.abstract | In the era of big data, the demand for advanced wireline transmission technologies has surged, driven by the need for high-speed and multichannel data exchange and transfer. These developments have necessitated enhancements in wireline communication bandwidth, significantly increasing high-performance transceivers’ power consumption. Given the limited availability of energy resources, achieving a balance between high performance and high efficiency is imperative. This thesis introduces an innovative energy harvesting technique for wireline transmissions to address these trends and challenges. This technique utilizes a switched capacitor circuit that features three-phase rotation and five-time interleaving, which is embedded into the I/O interface of the communication circuit. By mimicking a 50ohm termination using the switched capacitor, this approach maintains signal integrity and enables the harvesting of up to 300 microwatts of energy from the wireline transmission. This energy harvesting circuit is implemented using TSMC 40nm CMOS technology.
Additionally, a review of the existing literature reveals that the clock distribution circuit in wireline transmissions is a major contributor to power consumption. To address this, the proposed receiver incorporates a sub-baud-rate clock architecture to minimize power usage. The receiver also features a continuous-time linear equalizer, a 1tap decision feedback equalizer, and a clock and data recovery circuit, which collectively enhance the performance and efficiency of wired transmission. This proposed receiver fabricated in a TSMC 28nm CMOS technology consumes 18 mW. This thesis highlights the power efficiency challenges in modern wireline communication systems. It proposes viable technological solutions that optimize energy consumption while maintaining high-performance standards, thus facilitating more sustainable and efficient wireline communication technologies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-17T16:06:13Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-06-17T16:06:13Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝iii
摘要v Abstract vi 1 Introduction 1 1.1 Motivation and Research Goals . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Wireline Transceiver Link . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Termination and Signaling Power . . . . . . . . . . . . . . . . . 4 1.2.3 Impedance Matching in Wireless Energy Harvesting System . . . 6 1.2.4 Voltage Regulation and Voltage Booster in Energy Harvesting System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.5 Phase Generation and Clock Distribution . . . . . . . . . . . . . 10 1.2.6 SubBaudRate CDR . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.7 Bit Error Rate and Equalizers . . . . . . . . . . . . . . . . . . . 14 1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2 A Wireline Termination Embedded Energy Harvesting System with 300microwatt Extracted 19 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Architecture and Circuit Implementation . . . . . . . . . . . . . . . . . . 21 2.2.1 Proposed I/O interface . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 Discussion and analysis of proposed energy harvesting termination 22 2.2.3 Voltage boosting and timing generator . . . . . . . . . . . . . . . 28 2.2.4 The wireline RX embedded energy harvesting system . . . . . . . 33 2.3 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3.1 Measurement Environment . . . . . . . . . . . . . . . . . . . . . 34 2.3.2 Frequency domain Measurement . . . . . . . . . . . . . . . . . . 35 2.3.3 Timedomain Measurement . . . . . . . . . . . . . . . . . . . . 36 2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3 A SubBaudRate Wireline Receiver with One-Tap DFE 40 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2 SubBaudRate Receiver Architecture . . . . . . . . . . . . . . . . . . . 42 3.2.1 Proposed ExtraDataCanceling Technique in SubBaudRate Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.2 Feedforward Equalizer Shared With EDC . . . . . . . . . . . . . 48 3.2.3 Input Noise Analysis and SNR Impact on the Proposed Receiver and Traditional Receivers . . . . . . . . . . . . . . . . . . . . . 51 3.2.4 Proposed Subbaudrate Receiver with 1-Tap DFE . . . . . . . . 59 3.3 Proposed Clock Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3.1 Principle of Clock Recovery . . . . . . . . . . . . . . . . . . . . 60 3.3.2 Phase Detector Characteristics and Noideal Impacts . . . . . . . 65 3.3.3 Pattern Detection Logic . . . . . . . . . . . . . . . . . . . . . . 70 3.3.4 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.4.1 Instrument setup . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.4.2 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4 Conclusion 77 5 Future Works 78 Bibliography 80 | - |
| dc.language.iso | en | - |
| dc.subject | 三相旋轉 | zh_TW |
| dc.subject | 五倍時間相交 | zh_TW |
| dc.subject | 模仿50歐姆 | zh_TW |
| dc.subject | 能量獵取 | zh_TW |
| dc.subject | 切換式電容 | zh_TW |
| dc.subject | 有線傳輸介面 | zh_TW |
| dc.subject | 鮑率 | zh_TW |
| dc.subject | 次鮑率 | zh_TW |
| dc.subject | 時脈分配 | zh_TW |
| dc.subject | 決策迴授等化器 | zh_TW |
| dc.subject | 連續時間線性等化器 | zh_TW |
| dc.subject | 時脈資料回復 | zh_TW |
| dc.subject | five-time interleaving | en |
| dc.subject | baud rate | en |
| dc.subject | wireline I/O interface | en |
| dc.subject | switched capacitor | en |
| dc.subject | energy harvesting | en |
| dc.subject | 50-Ω mimicking | en |
| dc.subject | clock-and-data recovery | en |
| dc.subject | continuous-time-linear equalizer | en |
| dc.subject | decision feedback equalizer | en |
| dc.subject | Threephase rotation | en |
| dc.subject | clock distribution | en |
| dc.subject | sub-baud rate | en |
| dc.title | 低功率有線傳輸接收機設計 | zh_TW |
| dc.title | Design of Low-Power Wireline Receivers | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 陳巍仁;黃柏鈞;鄭國興;張順志;劉深淵;林宗賢 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Zen Chen;Po-Chiun Huang;Kuo-Hsing Cheng;Soon-Jyh Chang;Shen-Iuan Liu;Tsung-Hsien Lin | en |
| dc.subject.keyword | 三相旋轉,五倍時間相交,模仿50歐姆,能量獵取,切換式電容,有線傳輸介面,鮑率,次鮑率,時脈分配,決策迴授等化器,連續時間線性等化器,時脈資料回復, | zh_TW |
| dc.subject.keyword | Threephase rotation,five-time interleaving,50-Ω mimicking,energy harvesting,switched capacitor,wireline I/O interface,baud rate,sub-baud rate,clock distribution,decision feedback equalizer,,continuous-time-linear equalizer,clock-and-data recovery, | en |
| dc.relation.page | 88 | - |
| dc.identifier.doi | 10.6342/NTU202401105 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-06-14 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 21.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
