請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92723
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張慶瑞 | zh_TW |
dc.contributor.advisor | Ching-Ray Chang | en |
dc.contributor.author | 張晏瑞 | zh_TW |
dc.contributor.author | Yen-Jui Chang | en |
dc.date.accessioned | 2024-06-14T16:06:56Z | - |
dc.date.available | 2024-06-15 | - |
dc.date.copyright | 2024-06-14 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-06-13 | - |
dc.identifier.citation | [1] Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. Journal of Political Economy, 81:637–654, 1973.
[2] Robert C Merton. Theory of rational option pricing. The Bell Journal of Economics and Management Science, pages 141–183, 1973. [3] Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952. [4] Harry M Markowitz. Portfolio selection: Efficient diversification of investments. John Wiley Sons, 1959. [5] William F Sharpe. Capital asset prices: A theory of market equilibrium under con- ditions of risk. The Journal of Finance, 19(3):425–442, 1964. [6] Stephen A Ross. The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13(3):341–360, 1976. [7] Stavros A Zenios. High-performance computing in finance: The last 10 years and the next. Parallel Computing, 25(13-14):2149–2175, 1999. [8] Steven L Heston. A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies, 6(2):327–343, 1993. [9] David S Bates. Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options. The Review of Financial Studies, 9(1):69–107, 1996. [10] FrankJFabozzi,PetterNKolm,DessislavaAPachamanova,andSergioMFocardi. Robust portfolio optimization and management. John Wiley Sons, 2007. [11] Ahmed Oussous, Fatima-Zahra Benjelloun, Ayoub Ait Lahcen, and Samir Belfkih. Big data technologies: A survey. Journal of King Saud University-Computer and Information Sciences, 30(4):431–448, 2018. [12] James M Hutchinson, Andrew W Lo, and Tomaso Poggio. A nonparametric ap- proach to pricing and hedging derivative securities via learning networks. The Journal of Finance, 49(3):851–889, 1994. [13] JB Heaton, NG Polson, and Jan Hendrik Witte. Deep learning for finance: deep portfolios. Applied Stochastic Models in Business and Industry, 33(1):3–12, 2017. [14] Richard P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21(6/7):467–488, 1982. [15] Peter W. Shor. Algorithms for quantum computation: discrete logarithms and factor- ing. In Proceedings 35th Annual Symposium on Foundations of Computer Science, pages 124–134, 1994. [16] Andreas Trabesinger. Quantum computing: Towards reality. Nature Physics, 8:263, 2012. [17] F. Arute et al. Quantum supremacy using a programmable superconducting proces- sor. Nature, 574:505–510, 2019. [18] A. W. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for linear systems of equations. Phys. Rev. Lett., 103:150502, 2009. [19] S. Lloyd, M. Mohseni, and P. Rebentrost. Quantum principal component analysis. Nature Physics, 10:631–633, 2014. [20] V. Havlíček, A.D. Córcoles, K. Temme, et al. Supervised learning with quantum- enhanced feature spaces. Nature, 567:209–212, 2019. [21] Chien-Hung Cho, Chih-Yu Chen, Kuo-Chin Chein, et al. Quantum computation: Algorithms and applications. Chinese Journal of Physics, 72:248–269, 2021. [22] A. Montanaro. Quantum algorithms: an overview. npj Quantum Information, 2:15023, 2016. [23] Y. Aharonov, L. Davidovich, and N. Zagury. Quantum random walks. Phys. Rev. A, 48:1687–1690, 1993. [24] Andrew M. Childs. Universal computation by quantum walk. Phys. Rev. Lett., 102:180501, 2009. [25] Andrew M. Childs and Jeffrey Goldstone. Spatial search by quantum walk. Phys. Rev. A, 70:022314, 2004. [26] Andrew M. Childs, Richard Cleve, Enrico Deotto, et al. Exponential algorith- mic speedup by a quantum walk. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages 59–68, 2003. [27] Anirban Mallick and C. M. Chandrashekar. Dirac cellular automaton from split-step quantum walk. Scientific Reports, 6:25779, 2016. [28] Parth Rajauria, Prateek Chawla, and C. M. Chandrashekar. Estimation of one- dimensional discrete-time quantum walk parameters by using machine learning al- gorithms. 2020. [29] Dorit Aharonov, Andris Ambainis, Julia Kempe, and Umesh Vazirani. Quantum walks on graphs. In Proceedings of the thirty-third annual ACM symposium on Theory of computing. ACM, 2001. [30] EdwardFarhiandSamGutmann.Quantumcomputationanddecisiontrees.Physical Review A, 58:915–928, 1998. [31] Salvador Elías Venegas-Andraca. Quantum walks: a comprehensive review. Quantum Information Processing, 11:1015–1106, 2012. [32] Takuya Kitagawa, Mark S. Rudner, Erez Berg, and Eugene Demler. Exploring topo- logical phases with quantum walks. Physical Review A, 82:033429, 2010. [33] LouisBachelier.Theoryofspeculation.Ann.Sci.ÉcoleNorm.Sup.,3:21–86,1900. In French. [34] Eugene F. Fama. Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25(2):383–417, 1970. [35] A. W. Lo and A. C. MacKinlay. A Non-Random Walk Down Wall Street. Princeton University Press, 1999. [36] R. J. Shiller. Market Volatility. MIT Press, 1992. [37] R. C. Merton. A simple model of capital market equilibrium with incomplete infor- mation. The Journal of Finance, 42(3):483–510, 1987. [38] Daniel J. Egger and et al. Quantum computing for finance: Overview and prospects. IEEE Transactions on Quantum Engineering, 1, 2020. [39] Dylan Herman, Cody Googin, Xiaoyuan Liu, and et al. A survey of quantum com- puting for finance. arXiv preprint arXiv:2201.02773, 2022. [40] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplification and estimation. In Quantum Computation and Quantum Information, volume 305 of AMS Contemporary Mathematics, pages 53–74, 2002. [41] PatrickRebentrost,BrajeshGupt,andThomasR.Bromley.Quantumcomputational finance: Monte carlo pricing of financial derivatives. Phys. Rev. A, 98:022321, 2018. [42] NikitasStamatopoulosandetal.Optionpricingusingquantumcomputers.Quantum, 4:291, 2020. [43] Christa Zoufal, Aurelien Lucchi, and Stefan Woerner. Quantum generative ad- versarial networks for learning and loading random distributions. npj Quantum Information, 5:103, 2019. [44] Nikitas Stamatopoulos and et al. Towards quantum advantage in financial market risk using quantum gradient algorithms. Quantum, 6:770, 2022. [45] DongAnandetal.Quantum-acceleratedmultilevelmontecarlomethodsforstochas- tic differential equations in mathematical finance. Quantum, 5:481, 2021. [46] Shouvanik Chakrabarti and et al. A threshold for quantum advantage in derivative pricing. Quantum, 5:463, 2021. [47] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2010. [48] Hubert de Guise, Olivia Di Matteo, and Luis L. Sánchez-Soto. Simple factorization of unitary transformations. Phys. Rev. A, 97:022328, 2018. [49] YuvalR.Sanders,GuangHaoLow,ArturScherer,andDominicW.Berry.Black-box quantum state preparation without arithmetic. Phys. Rev. Lett., 122:020502, 2019. [50] A.Rocchetto,E.Grant,S.Strelchuk,etal.Learninghardquantumdistributionswith variational autoencoders. npj Quantum Information, 4:28, 2018. [51] Kalyan Dasgupta and Binoy Paine. Loading probability distributions in a quantum circuit, 2022. [52] J. Choi, A.L. Shaw, I.S. Madjarov, et al. Preparing random states and benchmarking with many-body quantum chaos. Nature, 613:468–473, 2023. [53] L. Grover and T. Rudolph. Creating superpositions that correspond to efficiently integrable probability distributions, 2002. [54] Alfred R. Oxenfeldt. A decision-making structure for price decisions. Journal of Marketing, 37(1):48–51, 1973. [55] Bouteska Ahmed. Understanding the impact of investor sentiment on the price for- mation process: A review of the conduct of american stock markets. The Journal of Economic Asymmetries, 22:e00172, 2020. [56] Yutaka Matsuzawa. An index theorem for split-step quantum walks. Quantum Information Processing, 19:227, 2020. [57] Akihiro Narimatsu, Hiromichi Ohno, and Kazuyuki Wada. Unitary equivalence classes of split-step quantum walks, 2023. [58] Daniel W. Stroock. Probability Theory: An Analytic View. Cambridge University Press, 2010. [59] Olav Kallenberg. Foundations of Modern Probability. Springer-Verlag, New York, 2002. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92723 | - |
dc.description.abstract | 本博士論文探討量子計算在金融領域的創新應用,專注於為應用及開發量子演算法於複雜金融模擬。透過運用量子力學的原理—疊加、纏結及干涉—本研究將量子物理與計算金融結合,創造了一個開創性的量子演算法。本研究的核心,多分步量子漫步(multi-SSQW),在傳統量子漫步的框架上進行擴展,融入多代理決策過程。此整合使得能夠精細模擬反映真實世界金融市場複雜性的複雜金融分佈和場景。該演算法的顯著靈活性、可靠的收斂特性和快速計算能力,將其定位為金融分析和戰略決策的變革工具。本研究展示了實際應用,為未來的金融模型和風險評估設定了新的先例。 | zh_TW |
dc.description.abstract | This dissertation delves into the innovative application of quantum computing within the finance sector, focusing on developing and implementing specialized quantum algorithms designed for complex financial simulations. By harnessing the principles of quantum mechanics—superposition, entanglement, and interference—this research synergizes quantum physics with computational finance to create a pioneering quantum algorithm. The centerpiece of our research, the multi-split-steps quantum walk (multi-SSQW), expands on traditional quantum walk frameworks by integrating multi-investors decision-making processes. This integration allows for the sophisticated modeling of complex financial distributions and scenarios, reflecting real-world financial market complexities. The algorithm's remarkable adaptability, consistent convergence, and capacity for swift calculations establish it as a revolutionary resource for financial analysis and strategic decision-making. Beyond theoretical implications, this research demonstrates practical applications, providing a significant computational edge over traditional methods and setting a new precedent for the future of financial modeling and risk assessment. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-14T16:06:56Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-06-14T16:06:56Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Verification Letter from the Oral Examination Committee...i
Acknowledgements...ii 摘要...iii Abstract...iv Contents...vi List of Figures...viii Chapter 1 Introduction...1 1.1 QuantitativeFinance ...1 1.2 QuantumComputing...3 1.3 QuantumWalks...6 1.4 QuantumFinancialSimulation...14 Chapter 2 Methodology...21 2.1 Architecture of Multi-Split-Step Quantum Walk (Multi-SSQW)...21 2.2 SolutionArchitecture...24 Chapter 3 Results...27 3.1 Performance Analysis of Daily Return Distributions for Stocks...27 3.2 Analysis of Binomial Distribution Performance...40 3.3 Application:PricingEuropeanCallOptions...42 Chapter 4 Discussion...46 Chapter 5 Conclusions and Further Work...49 Reference...51 | - |
dc.language.iso | en | - |
dc.title | 前沿方法:多分步量子漫步在量子態準備與金融市場模擬中的應用 | zh_TW |
dc.title | An Application of Multi-Split-Step Quantum Walks to Quantum State Preparation and Financial Market Simulations : A Frontier Approach | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 管希聖;林俊達;張森林;廖世偉;王國樑;于濂波 | zh_TW |
dc.contributor.oralexamcommittee | Hsi-Sheng Goan;Guin-Dar Lin;San-Lin Chung;Shih-wei Liao;Kuo-Liang WANG;Lien-Po Yu | en |
dc.subject.keyword | 量子漫步,量子演算法,量子態製備,量子金融,量子計算, | zh_TW |
dc.subject.keyword | Quantum Walks,Quantum Algorithm,Quantum Computing,Quantum Finance,Preparing Quantum State, | en |
dc.relation.page | 57 | - |
dc.identifier.doi | 10.6342/NTU202401141 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-06-13 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 物理學系 | - |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 5.42 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。