Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92718
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor沈俊嚴zh_TW
dc.contributor.advisorChun-Yen Shenen
dc.contributor.author王健安zh_TW
dc.contributor.authorJian-An Wangen
dc.date.accessioned2024-06-13T16:11:38Z-
dc.date.available2024-06-14-
dc.date.copyright2024-06-13-
dc.date.issued2024-
dc.date.submitted2024-06-11-
dc.identifier.citation[1] T. Bloom and T. G. F. Jones. A sum-product theorem in function fields, 2013.
[2] J. Bourgain. More on the sum-product phenomenon in prime fields and its applications. International Journal of Number Theory, 1(01):1–32, 2005.
[3] J. Bourgain, N. Katz, and T. Tao. A sum-product estimate in finite fields, and applications. Geometric & Functional Analysis GAFA, 14(1):27–57, 2004.
[4] G. Elekes. On the number of sums and products. Acta Arithmetica, 81(4):365–367, 1997.
[5] P. Erdös. On sets of distances of n points. The American Mathematical Monthly, 53(5):248–250, 1946.
[6] M. Z. Garaev. An explicit sum-product estimate in Fp, 2007.
[7] M. Z. Garaev and C.-Y. Shen. On the size of the set a(a+1), 2008.
[8] L.GuthandN.H.Katz. On the erdős distinct distances problem in the plane.Annals of mathematics, pages 155–190, 2015.
[9] T. G. F. Jones. New quantitative estimates on the incidence geometry and growth of finite sets, 2013.
[10] B.Murphy,G.Petridis,T.Pham,M.Rudnev,andS.Stevens.Onthepinneddistances problem in positive characteristic. Journal of the London Mathematical Society, 105(1):469–499, 2022.
[11] G.Petridis.New proofs of plünnecke-type estimates for product sets in groups,2011.
[12] C.-Y.Shen.Onthesumproductestimatesandtwovariablesexpanders.Publicacions Matemàtiques, pages 149–157, 2010.
[13] J. Solymosi. On sum-sets and product-sets of complex numbers. Journal de théorie des nombres de Bordeaux, 17(3):921–924, 2005.
[14] A. V. Sutherland. 9 local fields and hensel’s lemmas. 2019.
[15] E. Szemerédi and W. T. Trotter. Extremal problems in discrete geometry. Combinatorica, 3:381–392, 1983.
[16] T. Tao and V. H. Vu. Additive combinatorics, volume 105. Cambridge University Press, 2006.
[17] C. D. Tóth. The szemerédi-trotter theorem in the complex plane. Combinatorica, 35(1):95–126, feb 2015.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92718-
dc.description.abstract對於任意無有限子環的體,我們首先建立一個精確的 Bourgain-Katz-Tao 點線 重合上界。再者,在非阿基米德局部體上,我們給出一個強加乘集界。最後,結合前面兩種結果,我們證明一個非阿基米德局部體平面上的點線重合上界。

除此之外,應用我們證明的點線重合界,能夠探討非阿基米德局部體上的相異距離問題與擴展者問題。
zh_TW
dc.description.abstractFirst, we establish an explicit upper bound for the Bourgain-Katz-Tao’s point-line incidence theorem over fields without any finite subrings. Second, we obtain a stronger sum-product bound over non-archimedean local fields. Furthermore, by combining the previous two results, we prove an upper bound for point-line incidence over non-archimedean local fields.

As an application, we use our incidence bounds to study the distinct distance problem and the expander problems over non-archimedean local fields.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-13T16:11:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-06-13T16:11:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 (Page iii)
Abstract (Page v)
Contents (Page vii)
Chapter 1 Introduction (Page 1)
1.1 Background............................... 1
Chapter 2 Main Results (Page 3)
2.1 First Result............................... 3
2.1.1 Main Tools .............................. 4
2.1.2 Main Lemmas............................. 5
2.1.3 Proof of the First Result........................ 7
2.2 Second Result.............................. 15
2.2.1 Main Tools .............................. 16
2.2.2 Main Lemmas............................. 19
2.2.3 Proof of the Second Result ............................. 28
2.3 Main Result............................... 29
Chapter 3 Applications (Page 31)
3.1 Distinct Distance Problem ....................... 31
3.1.1 Isotropic Vectors ........................... 32
3.1.2 A Lower Bound on the Pinned Distance . . . . . . . . . . . . . . . 35
3.2 Expanders Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Via the Point-Line Incidence ..................... 41
3.2.2 Via the Stronger Sum-Product Theorem . . . . . . . . . . . . . . . 47
References (Page 49)
-
dc.language.isoen-
dc.subject加乘集界zh_TW
dc.subject點線重合zh_TW
dc.subject局部體zh_TW
dc.subject非阿基米德zh_TW
dc.subjectNon-Archimedeanen
dc.subjectLocal Fieldsen
dc.subjectSum-Product Bounden
dc.subjectPoint-Line Incidenceen
dc.title非阿基米德局部體上的點線重合界zh_TW
dc.titleA Point-Line Incidence Bound over Non-Archimedean Local Fieldsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林延輯;俞韋亘zh_TW
dc.contributor.oralexamcommitteeYen-chi Roger Lin;Wei-Hsuan Yuen
dc.subject.keyword點線重合,加乘集界,非阿基米德,局部體,zh_TW
dc.subject.keywordPoint-Line Incidence,Sum-Product Bound,Non-Archimedean,Local Fields,en
dc.relation.page50-
dc.identifier.doi10.6342/NTU202401132-
dc.rights.note未授權-
dc.date.accepted2024-06-12-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
4.67 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved