Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92717
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈俊嚴zh_TW
dc.contributor.advisorChun-Yen Shenen
dc.contributor.author江子緯zh_TW
dc.contributor.authorTzu-Wei Chiangen
dc.date.accessioned2024-06-13T16:11:16Z-
dc.date.available2024-06-14-
dc.date.copyright2024-06-13-
dc.date.issued2024-
dc.date.submitted2024-06-11-
dc.identifier.citation[Bou99] J. Bourgain. ”On triples in arithmetic progression”. Geom. Funct. Anal.,9(5):968–984, 1999.
[BS23] Bloom, Thomas F.; Sisask, Olof. ”An improvement to the Kelley-Meka bounds on three-term arithmetic progressions”.arXiv:2309.02353v1
[Rot53] K. F. Roth. ”On certain sets of integers”. J. London Math. Soc., 28:104–109,1953.
[San11] Sanders, Tom. ”On Roth’s theorem on progressions”. Annals of Mathematics.,(2) 174 (2011), no. 1, 619-636.
[SS07] Elias M. Stein,; Rami Shakarchi. ”Fourier analysis an introduction”. Princeton University Press, 2007.
[TV06] T. C. Tao and H. V. Vu. ”Additive combinatorics”. Cambridge University Press, Cambridge, 2006.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92717-
dc.description.abstractRoth 定理是加性組合中的一個知名定理,此定理的敘述為:給定一個正整數子集合,且此集合不包含任何長度為 3 的等差數列,則我們能給予此集合大小的估計。在 Roth 定理之後,有許多數學家對此集合的大小估計進行改進,在此篇文章哩,我們將介紹 Bourgain 與 Sanders 對此集合大小估計的改進。zh_TW
dc.description.abstractRoth’s theorem on arithmetic progressions is a result in additive combinatorics which states that if there is a set of positive integers that contains no non-trivial 3-term arithmetic progression, then we can give an estimate of the size of this set. There have been many refinements following Roth’s approach. In this paper, we will introduce the proofs of two refinements given by Bourgain and Sanders.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-13T16:11:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-06-13T16:11:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 v
Abstract vii
Contents ix
Chapter 1 Introduction 1
Chapter 2 Bourgain’s Approach 3
2.1 Summary 3
2.2 Basic Definitions 5
2.3 Estimates on Bohr Sets 5
2.4 Regular Bohr Sets 9
2.5 Estimation of Exponential Sum 15
2.6 Estimate of density 21
2.7 Comparison of the Integrals 24
2.8 Density Increment (1) 29
2.9 Density Increment (2) 31
2.10 Conclusion 36
Chapter 3 Sanders’ Approach 41
3.1 Summary 41
3.2 Basic Definitions and Notations 42
3.3 Bohr Sets 44
3.4 Spectrum, Orthogonal and Dissociated 45
3.4.1 Spectrum and Orthogonal 45
3.4.2 Dissociated 48
3.5 Basic Properties of Bohr Sets 60
3.6 Bohr Sets as Majorants 65
3.7 Getting a Density Increment 76
3.8 Roth’s Theorem in High Rank Bohr Sets 88
3.9 The Main Result 93
Chapter 4 Concrete Proofs of Sanders’ Approach 109
4.1 Summary 109
4.2 Basic Definitions and Notations 110
4.3 Bohr Sets 112
4.4 Spectrum, Orthogonal and Dissociated 113
4.4.1 Spectrum and Orthogonal 113
4.4.2 Dissociated 117
4.5 Basic Properties of Bohr Sets 130
4.6 Bohr Sets as Majorants 132
4.7 Getting a Density Increment 145
4.8 Roth’s Theorem in High Rank Bohr Sets 154
4.9 The Main Result 155
References 159
-
dc.language.isoen-
dc.subject哈代-李特爾伍德圓法zh_TW
dc.subjectRoth 定理zh_TW
dc.subjectBohr 集合zh_TW
dc.subjectSalem-Spencer 集合zh_TW
dc.subject傅立葉分析zh_TW
dc.subjectFourier Analysisen
dc.subjectSalem-Spencer seten
dc.subjectBohr seten
dc.subjectCircle Methoden
dc.subjectRoth’s Theoremen
dc.title等差數列集合密度的研究與進展zh_TW
dc.titleRecent progress on the density of three term arithmetic progressionsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林延輯;余韋亘zh_TW
dc.contributor.oralexamcommitteeYan-Ji Lin;Wei-Hsuan Yuen
dc.subject.keywordRoth 定理,哈代-李特爾伍德圓法,傅立葉分析,Salem-Spencer 集合,Bohr 集合,zh_TW
dc.subject.keywordRoth’s Theorem,Circle Method,Fourier Analysis,Salem-Spencer set,Bohr set,en
dc.relation.page159-
dc.identifier.doi10.6342/NTU202401107-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-06-11-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf2.17 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved