Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92705
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃念祖zh_TW
dc.contributor.advisorNien-Tsu Huangen
dc.contributor.author劉子瑜zh_TW
dc.contributor.authorTzu-Yu Liuen
dc.date.accessioned2024-06-13T16:07:36Z-
dc.date.available2024-06-14-
dc.date.copyright2024-06-13-
dc.date.issued2024-
dc.date.submitted2024-05-29-
dc.identifier.citation[1] J. Zhang, and S. Li, “Sensors for detection of Cr(VI) in water: a review,” International Journal of Environmental Analytical Chemistry, vol. 101, no. 8, pp. 1051-1073, 2021/06/21, 2021.
[2] N. Joseph, and B. Manoj, "Nanomaterials-Based Chemical Sensing," Nanotechnology for Electronic Applications, N. M. Mubarak, S. Gopi and P. Balakrishnan, eds., pp. 131-147, Singapore: Springer Nature Singapore, 2022.
[3] R. K. Tandon, P. T. Crisp, J. Ellis, and R. S. Baker, “Effect of pH on chromium(VI) species in solution,” Talanta, vol. 31, no. 3, pp. 227-228, 1984/03/01/, 1984.
[4] K. H. Cheung, and J.-D. Gu, “Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: A review,” International Biodeterioration & Biodegradation, vol. 59, no. 1, pp. 8-15, 2007/01/01/, 2007.
[5] M. A. Zaitoun, “Spectrophotometric determination of Chromium(VI) using cyclam as a reagent,” International Journal of Environmental Analytical Chemistry, vol. 85, no. 6, pp. 399-407, 2005/05/15, 2005.
[6] A. N. Anthemidis, G. A. Zachariadis, and J. A. Stratis, “On-line preconcentration and determination of copper, lead, and chromium(VI) using unloaded polyurethane foam packed column by flame atomic absorption spectrometry in natural waters and biological samples,” Talanta, vol. 58, no. 5, pp. 831-840, 2002/11/12/, 2002.
[7] T. Braun, and A. B. Farag, “Polyurethane foams and microspheres in analytical chemistry: Improved liquid-solid, gas-solid and liquid-liquid contact via a new geometry of the solid phase,” Analytica Chimica Acta, vol. 99, no. 1, pp. 1-36, 1978/07/01/, 1978.
[8] M. Ezoddin, F. Shemirani, and R. Khani, “Application of mixed-micelle cloud point extraction for speciation analysis of chromium in water samples by electrothermal atomic absorption spectrometry,” Desalination, vol. 262, no. 1, pp. 183-187, 2010/11/15/, 2010.
[9] M. Noroozifar, and M. Khorasani-Motlagh, “Specific Extraction of Chromium as Tetrabutylammonium-Chromate and Spectrophotometric Determination by Diphenylcarbazide: Speciation of Chromium in Effluent Streams,” Analytical Sciences, vol. 19, no. 5, pp. 705-708, 2003/05/01, 2003.
[10] D. G. Themelis, F. S. Kika, and A. Economou, “Flow injection direct spectrophotometric assay for the speciation of trace chromium(III) and chromium(VI) using chromotropic acid as chromogenic reagent,” Talanta, vol. 69, no. 3, pp. 615-620, 2006/05/15/, 2006.
[11] Z. Zhao, R. Gao, J. Li, S. Liu, and H. Liu, “Chromotropic Acid as a Reagent for Ultraviolet Spectrophotometric Determination of Hexavalent Chromium in Water,” Microchemical Journal, vol. 58, no. 1, pp. 1-5, 1998/01/01/, 1998.
[12] J. Guertin, J. A. Jacobs, and C. P. Avakian, Chromium (VI) handbook: CRC press, 2004.
[13] L. A. Malik, A. Bashir, A. Qureashi, and A. H. Pandith, “Detection and removal of heavy metal ions: a review,” Environmental Chemistry Letters, vol. 17, no. 4, pp. 1495-1521, 2019/12/01, 2019.
[14] S. Babazadeh, R. Bisauriya, M. Carbone, L. Roselli, D. Cecchetti, E. M. Bauer, S. Sennato, P. Prosposito, and R. Pizzoferrato, “Colorimetric Detection of Chromium(VI) Ions in Water Using Unfolded-Fullerene Carbon Nanoparticles,” Sensors (Basel), vol. 21, no. 19, Sep 23, 2021.
[15] N. N. Nghia, B. T. Huy, and Y.-I. Lee, “Colorimetric detection of chromium(VI) using graphene oxide nanoparticles acting as a peroxidase mimetic catalyst and 8-hydroxyquinoline as an inhibitor,” Microchimica Acta, vol. 186, no. 1, pp. 36, 2018/12/18, 2018.
[16] P. Joshi, S. Sarkar, S. K. Soni, and D. Kumar, “Label-free colorimetric detection of Cr(VI) in aqueous systems based on flower shaped silver nanoparticles,” Polyhedron, vol. 120, pp. 142-149, 2016/12/14/, 2016.
[17] K. J. Lee, N. Elgrishi, B. Kandemir, and J. L. Dempsey, “Electrochemical and spectroscopic methods for evaluating molecular electrocatalysts,” Nature Reviews Chemistry, vol. 1, no. 5, pp. 0039, 2017/05/10, 2017.
[18] A. K. Jain, V. K. Gupta, L. P. Singh, P. Srivastava, and J. R. Raisoni, “Anion recognition through novel C-thiophenecalix[4]resorcinarene: PVC based sensor for chromate ions,” Talanta, vol. 65, no. 3, pp. 716-721, 2005/02/15/, 2005.
[19] B. Dalkıran, H. E. Kormalı Ertürün, A. D. Özel, E. Canel, S. Özkınalı, and E. Kılıç, “Chromate-selective electrodes prepared by using calix[4]arenes for the speciation of Cr(VI) and Cr(III),” Ionics, vol. 23, no. 9, pp. 2509-2519, 2017/09/01, 2017.
[20] Y.-W. Choi, N. Minoura, and S.-H. Moon, “Potentiometric Cr(VI) selective electrode based on novel ionophore-immobilized PVC membranes,” Talanta, vol. 66, no. 5, pp. 1254-1263, 2005/06/15/, 2005.
[21] M. R. Ganjali, M. H. Eshraghi, S. Ghadimi, and S. Mojtaba, “Novel chromate sensor based on MWCNTs/Nanosilica/Ionic Liouid/Eu complex/graphite as a new nano-composite and its application for determination of chromate ion concentration in waste water of chromium electroplating,” Int. J. Electrochem. Sci, vol. 6, pp. 739-748, 2011.
[22] M. Rezayi, M. Ghasemi, R. Karazhian, M. Sookhakian, and Y. Alias, “Potentiometric Chromate Anion Detection Based on Co(SALEN)2 Ionophore in a PVC-Membrane Sensor,” Journal of The Electrochemical Society, vol. 161, no. 6, pp. B129, 2014/04/30, 2014.
[23] A. Benvidi, M. Elahizadeh, H. R. Zare, and R. Vafazadeh, “Highly Sensitive Membrane Electrode Based on a Copper(II)-bis(N-4-Methylphenyl-Salicyldenaminato) Complex for the Determination of Chromate,” Analytical Letters, vol. 44, no. 4, pp. 595-606, 2011/02/15, 2011.
[24] M. M. Ardakani, A. Dastanpour, and M. Salavati-Niasari, “Novel Coated-Wire Membrane Sensor Based on Bis(Acetylacetonato) Cadmium(II) for the Determination of Chromate Ions,” Microchimica Acta, vol. 150, no. 1, pp. 67-72, 2005/05/01, 2005.
[25] I. Švancara, K. Vytřas, K. Kalcher, A. Walcarius, and J. Wang, “Carbon Paste Electrodes in Facts, Numbers, and Notes: A Review on the Occasion of the 50-Years Jubilee of Carbon Paste in Electrochemistry and Electroanalysis,” Electroanalysis, vol. 21, no. 1, pp. 7-28, 2009.
[26] H. Ju, S. Liu, B. Ge, F. Lisdat, and F. W. Scheller, “Electrochemistry of Cytochrome c Immobilized on Colloidal Gold Modified Carbon Paste Electrodes and Its Electrocatalytic Activity,” Electroanalysis, vol. 14, no. 2, pp. 141-147, 2002/01/01, 2002.
[27] D. C. Prabhakaran, J. Riotte, Y. Sivry, and S. Subramanian, “Electroanalytical Detection of Cr(VI) and Cr(III) Ions Using a Novel Microbial Sensor,” Electroanalysis, vol. 29, no. 5, pp. 1222-1231, 2017/05/01, 2017.
[28] D. P. Jaihindh, B. Thirumalraj, S.-M. Chen, P. Balasubramanian, and Y.-P. Fu, “Facile synthesis of hierarchically nanostructured bismuth vanadate: An efficient photocatalyst for degradation and detection of hexavalent chromium,” Journal of Hazardous Materials, vol. 367, pp. 647-657, 2019/04/05/, 2019.
[29] K. Molaei, H. Bagheri, A. A. Asgharinezhad, H. Ebrahimzadeh, and M. Shamsipur, “SiO2-coated magnetic graphene oxide modified with polypyrrole–polythiophene: A novel and efficient nanocomposite for solid phase extraction of trace amounts of heavy metals,” Talanta, vol. 167, pp. 607-616, 2017/05/15/, 2017.
[30] E. Kazemi, A. M. Haji Shabani, S. Dadfarnia, and F. Izadi, “Speciation and determination of chromium ions by dispersive micro solid phase extraction using magnetic graphene oxide followed by flame atomic absorption spectrometry,” International Journal of Environmental Analytical Chemistry, vol. 97, no. 11, pp. 1080-1093, 2017/09/02, 2017.
[31] K. Dashtian, M. Ghaedi, and S. Hajati, “Photo-Sensitive Pb5S2I6 crystal incorporated polydopamine biointerface coated on nanoporous TiO2 as an efficient signal-on photoelectrochemical bioassay for ultrasensitive detection of Cr(VI) ions,” Biosensors and Bioelectronics, vol. 132, pp. 105-114, 2019/05/01/, 2019.
[32] A. Yari, and H. Bagheri, “Determination of Cr(VI) with Selective Sensing of Cr(VI) Anions by a PVC-Membrane Electrode Based on Quinaldine Red,” Journal of the Chinese Chemical Society, vol. 56, no. 2, pp. 289-295, 2009/04/01, 2009.
[33] S. Shahim, R. Sukesan, I. Sarangadharan, and Y. L. Wang, “Multiplexed Ultra-Sensitive Detection of Cr(III) and Cr(VI) Ion by FET Sensor Array in a Liquid Medium,” Sensors (Basel), vol. 19, no. 9, Apr 26, 2019.
[34] B. Liu, Y. Lei, and B. Li, “A batch-mode cube microbial fuel cell based “shock” biosensor for wastewater quality monitoring,” Biosensors and Bioelectronics, vol. 62, pp. 308-314, 2014/12/15/, 2014.
[35] H. Chung, W. J. Ju, E. H. Jho, and K. Nam, “Applicability of a submersible microbial fuel cell for Cr(VI) detection in water,” Environmental Monitoring and Assessment, vol. 188, no. 11, pp. 613, 2016/10/12, 2016.
[36] E. O. Jorge, M. M. Rocha, I. T. E. Fonseca, and M. M. M. Neto, “Studies on the stripping voltammetric determination and speciation of chromium at a rotating-disc bismuth film electrode,” Talanta, vol. 81, no. 1, pp. 556-564, 2010/04/15/, 2010.
[37] M. Grabarczyk, “Speciation Analysis of Chromium by Adsorptive Stripping Voltammetry in Tap and River Water Samples,” Electroanalysis, vol. 20, no. 20, pp. 2217-2222, 2008/10/01, 2008.
[38] C. Wang, and C. K. Chan, “Carbon Nanotube–Based Electrodes for Detection of Low–ppb Level Hexavalent Chromium Using Amperometry,” ECS Journal of Solid State Science and Technology, vol. 5, no. 8, pp. M3026, 2016/03/08, 2016.
[39] Z. Stojanović, Z. Koudelkova, E. Sedlackova, D. Hynek, L. Richtera, and V. Adam, “Determination of chromium(vi) by anodic stripping voltammetry using a silver-plated glassy carbon electrode,” Analytical Methods, vol. 10, no. 24, pp. 2917-2923, 2018.
[40] A. García-Miranda Ferrari, P. Carrington, S. J. Rowley-Neale, and C. E. Banks, “Recent advances in portable heavy metal electrochemical sensing platforms,” Environmental Science: Water Research & Technology, vol. 6, no. 10, pp. 2676-2690, 2020.
[41] S. Hassan, M. S. El-Shahawi, A. Othman, and M. Mosaad, “A Potentiometric Rhodamine-B Based Membrane Sensor for the Selective Determination of Chromium Ions in Wastewater,” Analytical Sciences, vol. 21, pp. 673-678, 07/01, 2005.
[42] P. Bergveld, “Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years,” Sensors and Actuators B: Chemical, vol. 88, no. 1, pp. 1-20, 2003/01/01/, 2003.
[43] M. Baylav, Ion-sensitive field effect transistor (ISFET) for MEMS multisensory chips at RIT: Rochester Institute of Technology, 2010.
[44] 阎秉峰, “离子选择性电极的工作原理,” 内蒙古科技与经济, vol. 3, pp. 106-109, 2005.
[45] R. Sharma, M. Geranpayehvaghei, F. Ejeian, A. Razmjou, and M. Asadnia, “Recent advances in polymeric nanostructured ion selective membranes for biomedical applications,” Talanta, vol. 235, pp. 122815, 2021/12/01/, 2021.
[46] C. Tang, and M. L. Bruening, “Ion separations with membranes,” Journal of Polymer Science, vol. 58, no. 20, pp. 2831-2856, 2020/10/15, 2020.
[47] V. M. Keresten, A. G. Bykov, I. V. Gofman, E. V. Solovyeva, A. Y. Vlasov, and K. N. Mikhelson, “Non-constancy of the bulk resistance of ionophore-based ion-selective membranes within the Nernstian response range: A semi-quantitative explanation,” Journal of Membrane Science, vol. 683, pp. 121830, 2023/10/05/, 2023.
[48] M. Waleed Shinwari, M. Jamal Deen, and D. Landheer, “Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design,” Microelectronics Reliability, vol. 47, no. 12, pp. 2025-2057, 2007/12/01/, 2007.
[49] Y. J. Huang, C. C. Lin, J. C. Huang, C. H. Hsieh, C. H. Wen, T. T. Chen, L. S. Jeng, C. K. Yang, J. H. Yang, F. Tsui, Y. S. Liu, S. Liu, and M. Chen, "High performance dual-gate ISFET with non-ideal effect reduction schemes in a SOI-CMOS bioelectrical SoC." pp. 29.2.1-29.2.4.
[50] P. D. v. d. Wal, D. Briand, G. Mondin, S. Jenny, S. Jeanneret, C. Millon, H. Roussel, C. Dubourdieu, and N. F. d. Rooij, "High-k dielectrics for use as ISFET gate oxides." pp. 677-680 vol.2.
[51] C. Xiao-Wen, and H. Nien-Tsu, “Multi-ion Selective Membrane Deposited Dual-gate Ion-Sensitive Field-Effect Transistor (DG-ISFET) Integrating the Microchamber Embedded Trench and Filter Membrane for Whole Blood Preparation and Ions Concentration Test in Blood,” Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 2022.
[52] S. Jia, G. Li, P. Liu, R. Cai, H. Tang, B. Xu, Z. Wang, Z. Wu, K. Wang, and X. W. Sun, “Highly Luminescent and Stable Green Quasi-2D Perovskite-Embedded Polymer Sheets by Inkjet Printing,” Advanced Functional Materials, vol. 30, no. 24, pp. 1910817, 2020.
[53] Y. Fang, K. Yang, Y. Zhang, C. Peng, A. Robledo-Cabrera, and A. López-Valdivieso, “Highly surface activated carbon to remove Cr(VI) from aqueous solution with adsorbent recycling,” Environmental Research, vol. 197, pp. 111151, 2021/06/01/, 2021.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92705-
dc.description.abstract水質重金屬離子濃度檢測為檢驗水質品質的一大指標。但傳統量測技術往往需要專業技術人員於實驗室操作精密儀器才能得到檢驗結果,而樣品運送途中也可能對樣本產生影響,造成量測誤差。為解決傳統技術問題,我們開發出一種整合雙閘極離子敏感場效電晶體(Dual-gate ion-selective field-effect transistor, DG-ISFET)的微流道裝置進行水質重金屬檢測。本裝置使用離子選擇膜(Ion selective membrane, ISM)以捕捉特定離子,並透過DG-ISFET量測捕捉行為所產生的訊號差異,進而確認離子濃度。為驗證上述技術,我們首先使用已知重金屬離子濃度的標準液以最佳化離子選擇膜的體積/表面積比,達到最大的捕捉效率,接著進行DG-ISFET結合ISM的標準液離子濃度測試,並以相關理論說明ISM與重金屬離子的捕捉反應是如何被DG-ISFET偵測並記錄。最終我們利用壓力幫浦系統自動注入水圳廢水到流道晶片中進行六價鉻離子捕捉與濃度檢測。此實驗應證了該晶片可在機台最大時長區間持續偵測訊號,並同時含有優異的靈敏度與選擇性。上述的研究結果表明此可攜式水質檢測晶片可用於即時且連續性的自動化水質重金屬離子檢測,並能透過訊號差動量測完全排除環境雜訊,有望在未來將其應用在家用定點水質重金屬檢測、探勘水質重金屬檢測或是搭載於無人機的遠端檢測環境中。zh_TW
dc.description.abstractTesting water for heavy metal ions is vital for assessing its quality. However, traditional methods require skilled technicians and complex lab equipment, posing logistical challenges. To address the above problems, we developed a microfluidic device with a Dual-gate Ion-Selective Field-Effect Transistor (ISFET) for heavy metal ion detection. Using an Ion-Selective Membrane (ISM), our device captures target ions and measures the signal difference via ISFET to determine ion concentration. We optimized ISM thickness and concentration of buffer solution using known ion standard solutions to validate our method, achieving maximum capture efficiency. We then evaluated sensing performance against standard ion solutions, elucidating the capture response mechanism. Finally, we tested the device used in ditch wastewater for chromium(VI) ion detection, demonstrating its sensitivity and selectivity. Our findings confirm the device's real-time water quality monitoring potential, with noise reduction capabilities for various applications, including household use and environmental monitoring.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-13T16:07:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-06-13T16:07:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 Research background 1
1.2 Properties of Cr(VI) 3
1.3 Applications of Cr(VI) 4
1.4 Toxicity of Cr(VI) 4
1.5 Current problems of Cr(VI) sensing 5
Chapter 2 Literature review 7
2.1 Traditional Cr(VI) sensing methods 7
2.2 Optical Cr(VI) sensing methods 9
2.3 Electrochemical Cr(VI) sensing methods 9
2.3.1 Potentiometric sensor 10
2.3.2 Amperometric sensor 13
2.4 Summary of current Cr(VI) sensing methods 15
2.5 Research Motivation 17
Chapter 3 Experimental Design 19
3.1 The principle of dual-gate ion-sensitive field-effect transistor (ISFET) 19
3.2 The principle of ISM 23
3.3 The working principle of ISM-ISFET 25
Chapter 4 Materials and methods 28
4.1 Experimental setup 28
4.2 Operation procedures of the experiment 30
4.2.1 Operation procedures of the microfluidic platform 30
4.2.2 Operation procedures of data processing 31
4.3 ISFET fabrication 31
4.4 PMMA microchannel fabrication 32
4.5 ISM solution preparation 33
4.6 Standard solution and water sample preparation 33
Chapter 5 Results and Discussion 35
5.1 Pure ISFET performance 35
5.1.1 pH and Cr(VI) sensing performance 35
5.1.2 Cr(VI) ISM thickness evaluation 36
5.2 Cr(VI) ISM-ISFET performance 40
5.2.1 Cr(VI) ISM thickness optimization 40
5.2.2 PBS buffer solution concentration optimization 42
5.2.3 Sensitivity and Selectivity of Cr(VI) ISM-ISFET 43
5.2.4 Cr(VI) sensing in ditch water using the Cr(VI) ISM-ISFET 45
5.3 Pump-channel system performance 47
5.3.1 pH sensing in DI water using the pump-channel system 47
5.3.2 Cr(VI) sensing in DI water using the pump-channel system 48
5.3.3 Cr(VI) sensing in ditch water using the pump-channel system 49
Chapter 6 Conclusion 52
Chapter 7 Future Work 53
7.1 ISM fabrication process standardization 53
7.2 ISM Reusability and regeneration 53
7.3 Multiple heavy metal ions sensing 54
REFERENCES 55
-
dc.language.isoen-
dc.title利用雙閘極敏感場效應電晶體結合離子選擇膜及微流道進行水質六價鉻離子濃度檢測zh_TW
dc.titleIon Selective Membrane with Dual-Gate Ion-Sensitive Field-Effect Transistor (ISFET) Integrating the Microfluidic Channel for Chromium(VI) Ion Detection in Wateren
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee盧彥文;林致廷;黃耀輝zh_TW
dc.contributor.oralexamcommitteeYen-Wen Lu;Chih-Ting Lin;Yaw-Huei Hwangen
dc.subject.keyword微流體系統,離子選擇膜,離子敏感場效電晶體,六價鉻,重金屬,zh_TW
dc.subject.keywordMicrofluidic channel,ion-selective membrane,ISFET,Chromium(VI),heavy metal ions,en
dc.relation.page58-
dc.identifier.doi10.6342/NTU202401040-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-05-30-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf9.94 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved