Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 重點科技研究學院
  3. 元件材料與異質整合學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92696
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林致廷zh_TW
dc.contributor.advisorChih-Ting Linen
dc.contributor.author夏筠庭zh_TW
dc.contributor.authorYun-Ting Hsiaen
dc.date.accessioned2024-06-07T16:06:34Z-
dc.date.available2024-06-08-
dc.date.copyright2024-06-07-
dc.date.issued2024-
dc.date.submitted2024-06-06-
dc.identifier.citation[1] LI, C. et al. Advances in perovskite photodetectors. InfoMat, 2020, 2.6: 1247-1256.
[2] WANG, H. et al. A review of perovskite-based photodetectors and their applications. Nanomaterials, 2022, 12.24: 4390.
[3] TIAN, W. et al. Hybrid organic-inorganic perovskite photodetectors. Small, 2017, 13.41: 1702107.
[4] SCHREIER, M. et al. Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics. Nature communications, 2015, 6.1: 7326.
[5] XIAO, Z. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nature materials, 2015, 14.2: 193-198.
[6] HU, X. et al. High-performance flexible broadband photodetector based on organolead halide perovskite. Advanced Functional Materials, 2014, 24.46: 7373-7380.
[7] ZHOU, J. et al. Photodetectors based on organic-inorganic hybrid lead halide perovskites. Advanced Science, 2018, 5.1: 1700256.
[8] CHEN, Y. et al. Structure and growth control of organic-inorganic halide perovskites for optoelectronics: From polycrystalline films to single crystals. Advanced Science, 2016, 3.4: 1500392.
[9] WANG, F. et al. Recent progress on electrical and optical manipulations of perovskite photodetectors. Advanced Science, 2021, 8.14: 2100569.
[10] LI, W. et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nature Reviews Materials, 2017, 2.3: 1-18.
[11] CHEN, Q. et al. Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10.3: 355-396.
[12] KAGAN, C. R. et al. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science, 1999, 286.5441: 945-947.
[13] KIESLICH, G. et al. Solid-state principles applied to organic – inorganic perovskites: new tricks for an old dog. Chemical Science, 2014, 5.12: 4712-4715.
[14] HU, M. et al. Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CH=NH2PbI3. Journal of Materials Chemistry A, 2014, 2.40: 17115-17121.
[15] ZHAO, W. et al. Zn-doping for reduced hysteresis and improved performance of methylammonium lead iodide perovskite hybrid solar cells. Materials Today Energy, 2017, 5: 205-213.
[16] BANERJEE, P. et al. Stability of 2D and 3D perovskites due to inhibition of light-induced decomposition. Journal of Electronic Materials, 2020, 49: 7072-7084.
[17] TIDROW, S. C. Mapping comparison of Goldschmidt''s tolerance factor with Perovskite structural conditions. Ferroelectrics, 2014, 470.1: 13-27.
[18] SUGII, K. et al. Precision lattice parameter measurements on doped indium phosphide single crystals. Journal of Electronic Materials, 1983, 12: 701-712.
[19] DHIVYAPRASATH, K. et al. Degradation behavior of methylammonium lead iodide (CH3NH3PbI3) perovskite film in ambient atmosphere and device. Solar Energy, 2023, 255: 89-98.
[20] ARISTIDOU, N. et al. The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angewandte Chemie, 2015, 127.28: 8326- 8330.
[21] ZHANG, T. et al. Profiling the organic cation-dependent degradation of organolead halide perovskite solar cells. Journal of Materials Chemistry A, 2017, 5.3: 1103-1111.
[22] TONG, C. J. et al. Uncovering the veil of the degradation in perovskite CH3NH3PbI3 upon humidity exposure: a first-principles study. The Journal of Physical Chemistry Letters, 2015, 6.16: 3289-3295.
[23] LI, D. et al. Humidity-induced grain boundaries in MAPbI3 perovskite films. The Journal of Physical Chemistry C, 2016, 120.12: 6363-6368.
[24] GUO, X. et al. Curing of degraded MAPbI3 perovskite films. RSC Advances, 2016, 6.65: 60620-60625.
[25] HAN, Y. et al. Degradation observations of encapsulated planar CH 3 NH 3 PbI 3 perovskite solar cells at high temperatures and humidity. Journal of Materials Chemistry A, 2015, 3.15: 8139-8147.
[26] KYE, Y. H. et al. Critical role of water in defect aggregation and chemical degradation of perovskite solar cells. The Journal of Physical Chemistry Letters, 2018, 9.9: 2196-2201.
[27] BOYD, C. C. et al. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chemical Reviews, 2018, 119.5: 3418-3451.
[28] SMITH, I. C. et al. A layered hybrid perovskite solar‐cell absorber with enhanced moisture stability. Angewandte Chemie International Edition, 2014, 53.42: 11232- 11235.
[29] CAO, D. H. et al. 2D homologous perovskites as light-absorbing materials for solar cell applications. Journal of the American Chemical Society, 2015, 137.24: 7843-7850.
[30] QUAN, L. N. et al. Ligand-stabilized reduced-dimensionality perovskites. Journal of the American Chemical Society, 2016, 138.8: 2649-2655.
[31] LEUNG, T. L. et al. Stability of 2D and quasi-2D perovskite materials and devices. Communications Materials, 2022, 3.1: 63.
[32] LIU, P. et al. Research progress on two-dimensional (2D) halide organic-inorganic hybrid perovskites. Sustainable Energy & Fuels, 2021, 5.16: 3950-3978.
[33] MERCIER, N. Hybrid halide perovskites: Discussions on terminology and materials. Angewandte Chemie International Edition, 2019, 58.50: 17912-17917.
[34] GANGADHARAN, D. T. et al. Searching for stability at lower dimensions: current trends and future prospects of layered perovskite solar cells. Energy & Environmental Science, 2019, 12.10: 2860-2889.
[35] LI, X. et al. The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chemical Reviews, 2021, 121.4: 2230-2291.
[36] SCHLIPF, J. et al. Shedding light on the moisture stability of 3D/2D hybridmperovskite heterojunction thin films. ACS Applied Energy Materials, 2019, 2.2: 1011- 1018.
[37] WYGANT, B. R. et al. Probing the degradation chemistry and enhanced stability of 2D organolead halide perovskites. Journal of the American Chemical Society, 2019, 141.45: 18170-18181.
[38] LV, G. et al. Multiple-noncovalent-interaction-stabilized layered Dion-Jacobson perovskite for efficient solar cells. Nano Letters, 2021, 21.13: 5788-5797.
[39] TANG, J. et al. Imaging the moisture-induced degradation process of 2D organolead halide perovskites. ACS Omega, 2022, 7.12: 10365-10371.
[40] LAI, Z. et al. High-performance flexible self-powered photodetectors utilizing spontaneous electron and hole separation in quasi-2D halide perovskites. Small, 2021, 17.23: 2100442.
[41] WANG, K. et al. Quasi-two-dimensional halide perovskite single crystal photodetector. ACS nano, 2018, 12.5: 4919-4929
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92696-
dc.description.abstract鹵化物鈣鈦礦(halide perovskites)以其卓越的光電性能、高載流子遷移率、可調控的能帶結構與能隙值和合成方法簡單又低成本的而聞名。應用於光感測器時,鹵化物鈣鈦礦有長的載流子遷移長度和高吸光系數等優異特性。不幸的是,由於其晶體結構,三維鹵化物鈣鈦礦存在穩定性問題。它容易受潮濕和室溫大氣的影響,使得元件易降解。因此,具有潛在光電應用的二維和準二維鹵化物鈣鈦礦被視為取代三維鹵化物鈣鈦礦的解決方案。然而,二維鹵化物鈣鈦礦具有較大的能隙和較低的載流子遷移率。這意味著這些材料吸光範圍較窄且電荷傳輸性能較差。為了克服這些挑戰,我們的研究目標是探討準二維鹵化物鈣鈦礦在何種層數(n)下能夠表現出更優異的光電性能和更佳的元件穩定性。在本研究中,我們成功地製備了金屬-半導體-金屬形式的光感測器,以二氧化矽作為基板,並在基板上鍍有指叉式鈦/金(5 奈米/50 奈米)電極,用於製作 Ruddlesden-Popper 相的PEA2MAn-1PbnI3n+1二維(n = 1)、準二維(n = 2 – 5)和三維(n = ∞)鹵化物鈣鈦礦光感測器。準二維鹵化物鈣鈦礦(n = 5)元件在 3 V 偏壓、650 nm 波長雷射照射時的光響應係數為 0.0022 mA/W。在室溫大氣環境條件下,經過 6 天後,光響應數值保持了原始值的 79%。同樣地,準二維鹵化物鈣鈦礦(n = 5)器件在 3 V 偏壓、450 nm 波長雷射照射時,光響應係數為 0.0047 mA/W,在室溫大氣環境下,經過 7 天後仍維持了 85%的原始值。相比之下,三維鹵化鈣鈦礦元件雖具有較高的光響應係數,在 3 V 偏壓、650 nm 雷射下的光響應係數為 0.12 mA/W,在 3 V 偏壓、450 nm 雷射下為 0.13 mA/W。然而,經過 6 天後,光響應在室溫大氣環境條件下分別降至原始值的 14%(650 nm 波長雷射及 3 V 偏壓)和 6.6%(450 nm 波長雷射及 3 V 偏壓)。準二維鹵化鈣鈦礦(n = 5)的光感測器在相對上具有較高的穩定性,但仍面臨著絕對光響應性較低的挑戰。zh_TW
dc.description.abstractHalide perovskites (HPs) are known for their significant performance, high carrier mobility, tunable bandgap, and simple, low-cost synthesis processes. When applied to photodetector devices, halide perovskites exhibit outstanding features such as a long carrier diffusion length and large optical absorption coefficients. However, three-dimensional halide perovskites exhibit stability issues due to their crystal structure. Three-dimensional halide perovskites are vulnerable to humidity and ambient condition, which makes the devices easier to degrade. As a result, two-dimensional and quasi-two-dimensional HPs with the potential for optoelectronic applications are regarded as a solution to replace three-dimensional halide perovskites. Unfortunately, two-dimensional HPs have a larger bandgap and lower charge-carrier mobility. This means that these materials have a narrow absorption range and poor charge transport. In order to overcome the challenges, we aim to determine at what value of n, quasi-two-dimensional HPs can exhibit a broader absorption range and greater performance. Herein, we successfully fabricate two-dimensional HPs, quasi-two-dimensional HPs and three-dimensional HPs based photodetectors with the interdigitated Ti/Au (5 nm/50 nm) electrodes as a bottom contact on the substrate. The quasi-two-dimensional HPs (n = 5) device exhibits a higher stability with a responsivity of 0.0022 mA/W under 650 nm laser irradiation at the 3 V. The photoresponse retains 79% of its original value after 6 days under ambient condition. The quasi-two-dimensional HPs (n = 5) device shows a responsivity of 0.0047 mA/W under 450 nm laser irradiation at 3 V and the photoresponse retains 85% of its original value after 6 days under ambient condition. Compared with quasi-two-dimensional HPs (n = 5) device, three-dimensional HPs device initially exhibits higher responsivity of 0.12 mA/W under 650 nm laser at 3 V and 0.13 mA/W under 450 nm laser at 3 V. However, after 6 days, the photoresponse degraded to 14% under 650 nm laser irradiation at the 3 V bias and 6.6% under 450 nm laser irradiation at the 3 V under ambient condition. The quasi-two-dimensional HPs (n = 5) based photodetectors improved the stability, but still face the challenges of lower responsivity.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-07T16:06:34Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-06-07T16:06:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsCONTENTS
口試委員審定書....................................................i
摘要............................................................ii
ABSTRACT.......................................................iii
CONTENTS........................................................iv
LIST OF FIGURES................................................vii
LIST OF TABLES..................................................xi
CHAPTER 1 Introduction...........................................1
1.1 Background...................................................1
1.2 Motivation and aims..........................................2
CHAPTER 2 Literature review......................................4
2.1 Photodetector general overview...............................4
2.1.1 Brief introduction of photodetectors.......................4
2.1.2 Optoelectronic performance of photodetectors...............6
2.2 Introduction of halide perovskites...........................8
2.2.1 Structure of lead-based halide perovskites.................8
2.2.2 Various dimensional perovskite materials...................10
2.3 Approaches to enhance the stability of perovskites...........13
2.3.1 Structure and synthetic strategies.........................13
2.3.2 Stability issue ...........................................15
CHAPTER 3 Experimental section...................................17
3.1 Experimental setup...........................................17
3.2 Chemicals....................................................18
3.3 Experimental instruments.....................................19
3.4 Analytical instruments.......................................20
3.4.1 UV-vis-NIR spectrometer....................................20
3.4.2 Photoluminescence spectrometer.............................21
3.4.3 X-ray diffractometer.......................................21
3.4.4 Scanning electron microscopy ..............................22
3.4.5 I-V curve and photoresponse measurement....................22
3.5 Experimental process.........................................24
3.5.1 Preparation of the substrate and electrodes................24
3.5.2 Preparation of PEA2MAn-1PbnI3n+1 and MAPbI3 solutions......24
3.5.3 Fabrication of the device..................................26
3.5.4 Device characterization ...................................26
CHAPTER 4 Results and discussion.................................27
4.1 Devices fabrication..........................................27
4.2.1 Devices integration .......................................27
4.2.1 Optimizing Film Thickness..................................28
4.2 Material analysis............................................30
4.2.1 XRD analysis...............................................30
4.2.2 Absorbance ................................................30
4.3 Optoelectronic properties....................................32
4.3.1 I-V curves.................................................32
4.3.2 Responsivity ..............................................36
4.3.3 EQE measurement............................................37
4.4 Temporal response ...........................................39
4.4.1 I-t curves.................................................39
4.4.2 Response speed.............................................40
4.5 Stability test...............................................41
4.5.1 XRD analysis...............................................41
4.5.2 Absorbance spectrum........................................42
4.5.3 I-V characteristic ........................................43
4.5.4 Responsivity(R)............................................44
CHAPTER 5 Conclusion and prospects...............................49
5.1 Conclusion...................................................49
5.2 Prospect.....................................................49
References.......................................................51
-
dc.language.isoen-
dc.subject鹵化物鈣鈦礦zh_TW
dc.subject準二維鈣鈦礦zh_TW
dc.subject光響應zh_TW
dc.subject穩定性zh_TW
dc.subject光感測器zh_TW
dc.subjectphotodetectorsen
dc.subjectstabilityen
dc.subjectresponsivityen
dc.subjecthalide perovskitesen
dc.subjectquasi-2D perovskitesen
dc.title三維和準二維鹵化物鈣鈦礦金屬-半導體-金屬光感測器的穩定性和光電特性zh_TW
dc.titleStability and Optoelectronic Properties of 3D and Quasi-2D Halide Perovskite Metal-Semiconductor-Metal Photodetectorsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡孟霖;蔡東昇zh_TW
dc.contributor.oralexamcommitteeMeng-Lin Tsai;Dung-Sheng Tsaien
dc.subject.keyword準二維鈣鈦礦,鹵化物鈣鈦礦,光感測器,穩定性,光響應,zh_TW
dc.subject.keywordquasi-2D perovskites,halide perovskites,photodetectors,stability,responsivity,en
dc.relation.page55-
dc.identifier.doi10.6342/NTU202401014-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-06-06-
dc.contributor.author-college重點科技研究學院-
dc.contributor.author-dept元件材料與異質整合學位學程-
顯示於系所單位:元件材料與異質整合學位學程

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf3.73 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved